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Lightweight Vision Transformers via Knowledge Distillation and 

Mixed-Precision Quantization 

Background 

Despite excellent accuracy, Vision Transformers are computationally 

heavy. Knowledge distillation (KD) and mixed-precision quantization offer 

promising ways to maintain accuracy while lowering complexity [Hinton 

et al., 2015; Zhang et al., 2023]. 

Problem Description 

Develop a student-teacher ViT compression framework using KD and 

mixed-precision quantization. The student model should preserve visual 

quality while operating with reduced bit precision per layer. 

Milestones and Extensions 

• Select teacher ViT (e.g., DeiT-B) and define lightweight student 

variant. 

• Implement KD loss combining logits + feature alignment. 

• Apply per-layer quantization (4–8 bit) using QAT. 

• Evaluate accuracy, FLOPs, and compression ratio. 

• Extension: hardware deployment using TensorRT or mobile GPU. 

Tools, Qualifications, and Outcomes 

• Skills: PyTorch, ViT, quantization, KD theory. 

• Tools: timm models, TensorRT, HPC GPU. 

• Outcomes: Lightweight ViT achieving near-teacher accuracy with 

large efficiency gains. 
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