<table>
<thead>
<tr>
<th>Kurskod</th>
<th>Provkod</th>
<th>Tentamensdatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTO74G</td>
<td>TENT</td>
<td>2018-06-08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kursnamn</th>
<th>Provnamn</th>
<th>Ort</th>
<th>Termin</th>
<th>Ämne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maskinteknik GR (A), Tillämpad mätteknik</td>
<td>Tentamen</td>
<td>Östersund</td>
<td>V18</td>
<td>Maskinteknik</td>
</tr>
</tbody>
</table>
DENNA TENTAMEN BESTÄR AV 7 UPPGIFTER OM TOTALT 30 POÄNG

BETYGSGRÄNSER:
0 – 11.5p = betyg F
12 - 14.5p = betyg Fx
15 – 18.5p = betyg E
19 - 21.5p = betyg D
22 - 24.5p = betyg C
25 - 27.5p = betyg B
28 - 30p = betyg A

Examinator: Andrei Koptiouk
Utskriven av: Andrei Koptiouk
Jourhavande lärare: Andrei Koptiouk, Mats Ainegren
 tel 010-142 88 41 tel 010-142 84 72

Hjälpmedel: miniräknare

Ref.: Brita Åkerström Brita.Akerstrom@miun.se
010-142 87 70

Lycka till!
Andrei och Mats
1. <3p>
 a) Ange, och beskriv kortfattat, minst en princip som används för att mäta vattentemperatur. (1p)
 b) Ange, och beskriv kortfattat, minst två principer som används för att mäta nivån i en vätsketank/behållare. (1p)
 c) Ange, och beskriv kortfattat, minst en princip som används för att mäta atmosfärtrycket. (1p)

2. <2p>
 Vad är pH? Beskriv kortfattat. Vad är pH-värdet för en neutral vätska (rent vatten)? (2p)

3. <4p>
 Tabellen nedan visar resultaten av mätningar gjorda på en axeldiameter efter tillverkningen på en verkstad.
 Specifikationerna på ritningarna är satta till: D = 55.65 ± 0.15 mm

<table>
<thead>
<tr>
<th>Meas. #</th>
<th>Value, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>56.12</td>
</tr>
<tr>
<td>2</td>
<td>55.43</td>
</tr>
<tr>
<td>3</td>
<td>55.89</td>
</tr>
<tr>
<td>4</td>
<td>55.43</td>
</tr>
<tr>
<td>5</td>
<td>56.12</td>
</tr>
<tr>
<td>6</td>
<td>55.62</td>
</tr>
<tr>
<td>7</td>
<td>55.9</td>
</tr>
<tr>
<td>8</td>
<td>55.47</td>
</tr>
<tr>
<td>9</td>
<td>55.75</td>
</tr>
<tr>
<td>10</td>
<td>55.49</td>
</tr>
</tbody>
</table>

 a) Vilka komponenter kommer att klara kvalitetskontrollen utifrån specifikationen på ritningen? (1p)
 b) Vad är det systematiska tillverkningsfelet för denna uppsättning axlar? (1p)
 c) Vad är det standardavvikelsen ($\sigma = s$)? (2p)
4. <3p>
a) Nononoiskalan på ett skjutmått visar följande:

![Skalan](image)

Vilket är det uppmätta värdet? (1p)
Observera, den övre skalan är huvudskalan och den nedre är den rörliga

b) Nononoiskalan på ett mikrometermått visar följande:

![Mikrometer](image)

Vilket är det uppmätta värdet? (2p)

5. <4p>

En termometer är i grunden en liten vätskebehållare med färgad etanol och ett kapillärört fastsatt vätskebehållaren. När etanolen expanderar så när den det kapillära röret och formar en "färgad bom" som man använder för att läsa av temperaturen. För varje grad som temperaturen ökar, så ökar den "färgade bomen" i det kapillära röret med höjden \(h \).

Vätskebehållaren innehåller \(V = 1 \text{ cm}^3 \) av etanol, innerdiametern på det kapillära röret är \(d = 0.2 \text{ mm} \) och expansionskoefficienten för etanol är \(\alpha_v = 0.75 \times 10^{-3}[1/\degree C] \).

Räkna ut hur mycket den "färgade bomen" kommer att ändras i höjden \(h \) för varje grad förändring i temperatur.
6. <6p>
Vi mäter effekten som försvinner i ett motstånd indirekt. Genom att mäta upp resistansen, spänningen över motståndet och strömmen som passerar det så kan vi räkna ut förlusten genom att använda Ohms lag:
Första alternativet genom att endast mäta upp spänningen och strömmen:
\[P_{[\text{Watt}]} = U_{[\text{Volt}]} \cdot I_{[\text{Ampere}]} \]
Andra alternativet genom att endast mäta upp spänningen och resistansen:
\[P_{[\text{Watt}]} = \frac{U^2_{[\text{Volt}^2]}}{R_{[\Omega]}} \]
Resultatet av mätningarna är:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Medelvärde</th>
<th>Standardavvikelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spänning</td>
<td>(U_m = 10.0 \text{ V})</td>
<td>(\sigma_U = 0.05 \text{ V})</td>
</tr>
<tr>
<td>Ström</td>
<td>(I_m = 0.99 \text{ A})</td>
<td>(\sigma_I = 0.05 \text{ A})</td>
</tr>
<tr>
<td>Resistans</td>
<td>(R_m = 10.15 \text{ \Omega})</td>
<td>(\sigma_R = 0.25 \text{ \Omega})</td>
</tr>
</tbody>
</table>

a) Räkna ut medelvärdet av effektförlusten för båda alternative ovan. (2p)
b) Räkna ut standardavvikelsen för den beräknade effektförlusten för båda alternativen ovan. (4p)

Tips. Partial derivates:
\[
\frac{\partial}{\partial I}(UI) = U
\]
\[
\frac{\partial}{\partial U}(UI) = I
\]
\[
\frac{\partial}{\partial U}\left(\frac{U^2}{R}\right) = \frac{2U}{R}
\]
\[
\frac{\partial}{\partial R}\left(\frac{U^2}{R}\right) = -\frac{U^2}{R^2}
\]

7. <3.5p>
Luftmotstånd (\(F_d \)) på ett föremål varierar med några olika faktorer, se ekvationen nedan. Förklara varje faktor och reflektera över dess relativa betydelse för luftmotståndet. Gör gärna något räkneexempel. Skriv också korrekt enhet för varje faktor. 3p
\[
F_d = \frac{1}{2} C_d \rho v^2
\]

8. <4.5p>
Genom att mäta några fysiologiska variabler kan man räkna ut kroppens syreförbrukning, koldioxidproduktion och respiratorisk kvot. Beskriv metoden och de fysiologiska variablerna.