Försättsblad Prov Original

<table>
<thead>
<tr>
<th>Kurskod</th>
<th>Provkod</th>
<th>Tentamensdatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA087G</td>
<td>T100</td>
<td>2018-06-08</td>
</tr>
</tbody>
</table>

- **Kursnamn**: Matematik GR (B), Matematisk statistik
- **Provnamn**: Tentamen
- **Ort**: Sundsvall
- **Termin**: V18
- **Ämne**: Matematik
1. a) Låt A och B var två händelser sådana att

$$ P(A \cup B) = 0.7, \quad P(A \cap B^*) = 0.2 \quad \text{och} \quad P(A^* \cap B) = 0.3. $$

Är händelserna A och B oberoende?

b) Stickprovet 15, 12, 15, 14, 19 kommer från $f^g(p)$. Bestäm en lämplig skattning av p baserat på detta stickprov.

(2p) (3p)

2. Betrakta fördelningen som beskrivs av följande fördelningsfunktion.

$$ F(x) = \begin{cases}
0 & \text{om } x < 0 \\
\sin(x/2) & \text{om } 0 \leq x < \pi \\
1 & \text{om } x \geq \pi.
\end{cases} $$

a) Givet ett stickprov x_1, x_2, x_3 från denna fördelning, vad är sannolikheten att minst två av talen är större än $\pi/2$?

b) Låt X vara en stokastisk variabel med denna fördelning. Bestäm dess väntevärde och variant.

c) Givet ett stickprov med 1000 observationer från denna fördelning, vad är sannolikheten att dess summa är mellan 1100 och 1150?

(2p) (3p) (3p)

3. Vid produktion av en viss enhet kan två olika typer av fel uppstå, A och B, och processen är sådan att en enhet inte kan ha båda felen samtidigt. Vid försäljning specificeras att fel A förekommer med sannolikhet 5% och fel B med sannolikhet 9%.

Vid en kontroll undersöktes 150 slummpässigt utvalda enheter och av dessa hade 12 stycken fel A och 21 stycken fel B. Resterande enheter var felfria. Gör ett test på signifikansnivån 5% för att undersöka huruvida felspecifikationen är rimlig.

(5p)
4. I ett försök kastas en vanlig tärning upprepade gånger och man räknar antalet kast till dess att något av utfallen har förekommit två gånger.

 a) Gör en sannolikhetsmodell och beskriv hur antalet kast är fördelat. (4 p)
 b) Om försöket upprepas 10 gånger, vad är sannolikheten att få sju tärningskast någon av gångerna (dvs minst en gång)? (2 p)
 c) Om försöket upprepas 100 gånger, hur många tärningskast kan man då förvänta sig ha utfört sammanlagt? (1 p)

5. En förening utför en årlig pengainsamling via brev, där 1 000 medlemmar ombeds att bidra med endera 50 kr eller 100 kr. Under tidigare insamlings har bidrag å 50 kr varit dubbelt så vanliga som bidrag å 100 kr och 46 % väljer att inte lämna något bidrag. Baserat på dessa uppgifter, gör en sannolikhetsmodell och beräkna sannolikheten att insamlingen ger ett tillskott på åtminstone 35 000 kr. (5 p)

 a) När Aras har kommit hem drar han en kula på måfå ur kulpåsen. Vad är sannolikheten att kulan är grön? (3 p)
 b) Givet att Aras efter hemkomst drar en grön kula ur kulpåsen, vad är sannolikheten att han tappade två röda kolor på hemvägen? (2 p)

7. En opinionsundersökning har utförts vid två separata tillfällen. De tillfrågade personerna får ange huruvida de tänker rösta på något av regeringspartierna, Alliansen eller ingetdera. Endast svar där precis ett av alternativen anges har registrerats. I tabellen nedan anges det totala antalet svar som har registrerats vid de två tillfällena samt svarsfrekvenser för regeringspartierna respektive Alliansen.

<table>
<thead>
<tr>
<th></th>
<th>Regeringspartierna</th>
<th>Alliansen</th>
<th>Totala antalet svar</th>
</tr>
</thead>
<tbody>
<tr>
<td>mars 2018</td>
<td>2810</td>
<td>3470</td>
<td>9724</td>
</tr>
<tr>
<td>maj 2018</td>
<td>2076</td>
<td>2844</td>
<td>8259</td>
</tr>
</tbody>
</table>

Påvisar detta en förändring av regeringspartiernas popularitet på signifikansnivån 1 %? (7 p)

Lycka till!
1 Sannolikhetsteori

1.1 Stokastiska variabler

Varians \(V(X) = E(X^2) - (E(X))^2 \)
Standardavvikelse \(D(X) = \sqrt{V(X)} \)
Kovarians \(C(X, Y) = E((X - E(X))(Y - E(Y))) = E(XY) - E(X)E(Y) \)
Korrelationskoefficient \(\rho(X, Y) = \frac{C(X, Y)}{D(X)D(Y)} \)

1.2 Diskreta fördelningar

Binomialfördelningen \(X \) är Bin\((N, p)\) där \(0 < p < 1 \) och \(N \in \mathbb{N} \) om
\[
p_X(k) = \binom{N}{k} p^k (1-p)^{N-k}, \quad k = 0, 1, \ldots, N.
\]
\(E(X) = Np, \ V(X) = Np(1-p) \)

"Förstas%
1.3 Kontinuerliga fördelningar

Likformig fördelning \(X \) är \(U(a,b) \) där \(a < b \) om

\[
f_X(x) = \begin{cases}
\frac{1}{b-a} & \text{för } a < x < b \\
0 & \text{annars}
\end{cases}
\]

\[
E(X) = \frac{a+b}{2}, \quad V(X) = \frac{(b-a)^2}{12}
\]

Exponentialfördelningen \(X \) är \(\text{Exp}(\lambda) \) där \(\lambda > 0 \) om

\[
f_X(x) = \begin{cases}
\lambda e^{-\lambda x} & \text{för } x > 0 \\
0 & \text{annars}
\end{cases}
\]

\[
E(X) = \frac{1}{\lambda}, \quad V(X) = \frac{1}{\lambda^2}
\]

Normalfördelningen \(X \) är \(\text{N}(\mu, \sigma) \) där \(\mu \in \mathbb{R}, \sigma > 0 \) om

\[
f_X(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.
\]

\[
E(X) = \mu, \quad V(X) = \sigma^2
\]

1.4 Centrallaggränsvärdesatsen

Om \(X_1, X_2, \ldots, X_n \) är oberoende likafördelade stokastiska variabler med väntevärde \(\mu \) och standardavvikelse \(\sigma \) så är

\[
\overline{X} = \frac{1}{n} \sum_{j=1}^{n} X_j
\]

approximativt \(\text{N}(\mu, \sigma/\sqrt{n}) \) om \(n \) är stort.

1.5 Approximation

\(\text{Hyp}(N,n,p) \) är approximativt \(\text{Bin}(n,p) \) om \(\frac{n}{N} \leq 0.1 \)

\(\text{Bin}(N,p) \) är approximativt \(\text{Po}(Np) \) om \(p \leq 0.1 \)

\(\text{Bin}(N,p) \) är approximativt \(\text{N}(Np, \sqrt{Np(1-p)}) \) om \(Np(1-p) \geq 10 \)

\(\text{Po}(\mu) \) är approximativt \(\text{N}(\mu, \sqrt{\mu}) \) om \(\mu \geq 15 \)
2 Statistikteori

2.1 Beskrivande statistik

\[\bar{x} = \frac{1}{n} \sum_{j=1}^{n} x_j \]

\[s^2 = \frac{1}{n-1} \sum_{j=1}^{n} (x_j - \bar{x})^2 = \frac{1}{n-1} \left(\sum_{j=1}^{n} x_j^2 - \frac{1}{n} \left(\sum_{j=1}^{n} x_j \right)^2 \right) \]

2.2 Punktskattningar

Låt \(X \) vara en stokastisk variabel där fördelningen för \(X \) beror på en okänd parameter \(\theta \). Låt \(x_1, \ldots, x_n \) vara en observation på stokastiska variabler \(X_1, \ldots, X_n \) som är oberoende och som alla är lika fördelade som \(X \).

Maximum-likelihood-metoden. Det värde \(\hat{\theta}_{\text{obs}}^* \) som maximerar \(L \)-funktionen

\[L(\theta) = \begin{cases} p_X(x_1; \theta) \cdots p_X(x_n; \theta), & \text{diskreta fallet} \\ f_X(x_1; \theta) \cdots f_X(x_n; \theta), & \text{kontinuerliga fallet} \end{cases} \]

kallas **maximum-likelihood-skattningen** (ML-skattningen) av \(\theta \).

Minsta-kvadrat-metoden. Antag att \(E(X) = m(\theta) \). Det värde \(\hat{\theta}_{\text{obs}}^* \) som minimerar kvadratsumman

\[Q(\theta) = \sum_{j=1}^{n} (x_j - m(\theta))^2 \]

kallas **minsta-kvadrat-skattningen** (MK-skattningen) av \(\theta \).

2.3 Vanliga stickprovsvariabler

Ett stickprov. Låt \(X_1, \ldots, X_n \) vara oberoende stokastiska variabler som alla är lika fördelade.

\[\bar{X} = \frac{1}{n} \sum_{j=1}^{n} X_j, \quad S^2 = \frac{1}{n-1} \sum_{j=1}^{n} (X_j - \bar{X})^2. \]

Om \(X_1, \ldots, X_n \) är \(N(\mu, \sigma) \) gäller

\[\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \text{ är } N(0,1), \quad \frac{\bar{X} - \mu}{S/\sqrt{n}} \text{ är } t(n-1), \quad \frac{n-1}{\sigma^2} S^2 \text{ är } \chi^2(n-1). \]
Poolad variansskattning från två stickprov. Låt X_1, \ldots, X_{n_1} vara likafördelade och Y_1, \ldots, Y_{n_2} vara likafördelade. Samtliga stokastiska variabler antas oberoende och med samma varians σ^2.

$$s^2 = \frac{1}{n_1 + n_2 - 2} \left(\sum_{j=1}^{n_1} (X_j - \bar{X})^2 + \sum_{j=1}^{n_2} (Y_j - \bar{Y})^2 \right).$$

Om X_1, \ldots, X_n är $N(\mu_1, \sigma)$ och Y_1, \ldots, Y_{n_2} är $N(\mu_2, \sigma)$ gäller

$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{1/n_1 + 1/n_2}} \text{ är } t(n_1 + n_2 - 2).$$

2.4 Konfidensintervall

Låt x_1, \ldots, x_n vara en observation på stokastiska variabler X_1, \ldots, X_n som är oberoende och som alla är $N(\mu, \sigma)$.

Konfidensintervall för μ. Ett två-sidigt konfidensintervall med konfidensgraden $1 - \alpha$ är:

a) σ känd: $\bar{x} - \frac{\sigma}{\sqrt{n}} \chi_{\alpha/2} \leq \mu \leq \bar{x} + \frac{\sigma}{\sqrt{n}} \chi_{\alpha/2}$

b) σ okänd: $\bar{x} - \frac{s}{\sqrt{n}} t_{\alpha/2} (n-1) \leq \mu \leq \bar{x} + \frac{s}{\sqrt{n}} t_{\alpha/2} (n-1)$

Konfidensintervall för σ^2. Ett två-sidigt konfidensintervall med konfidensgraden $1 - \alpha$ är:

$$\frac{n - 1}{\chi^2_{\alpha/2} (n-1)} s^2 \leq \sigma^2 \leq \frac{n - 1}{\chi^2_{1-\alpha/2} (n-1)} s^2$$

2.5 Hypotesprövning

Konfidensmetoden Förkasta $H_0 : \theta = \theta_0$ på nivån α om θ_0 ej faller inom ett lämpligt valt konfidensintervall med konfidensgraden $1 - \alpha$.

χ^2-test

- Test av fördelning: Ett försök ger något av resultaten A_1, \ldots, A_r med respektive sannolikheter $P(A_1), \ldots, P(A_r)$. Man har n observationer där frekvensen för händelse A_j är x_j.
$H_0: P(A_1) = p_1, \ldots, P(A_r) = p_r.$

Om H_0 är sann blir

$$Q = \sum_{j=1}^r \frac{(x_j - np_j)^2}{np_j}$$

e ett utfall av en approximativt $\chi^2(r - 1)$-fordelad stokastisk variabel.

Tumregel för god approximation: $np_j \geq 5$

- Homogenitetstest: Ett försök ger något av resultaten A_1, \ldots, A_r. Man har s försöksserier. Inom den i-te serien har man n_i observationer och frekvensen x_{ij} för händelsen A_j.

<table>
<thead>
<tr>
<th>serie</th>
<th>A_1</th>
<th>A_2</th>
<th>\ldots</th>
<th>A_r</th>
<th>antal försök</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x_{11}</td>
<td>x_{12}</td>
<td>\ldots</td>
<td>x_{1r}</td>
<td>n_1</td>
</tr>
<tr>
<td>2</td>
<td>x_{21}</td>
<td>x_{22}</td>
<td>\ldots</td>
<td>x_{2r}</td>
<td>n_2</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\ldots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>s</td>
<td>x_{s1}</td>
<td>x_{s2}</td>
<td>\ldots</td>
<td>x_{sr}</td>
<td>n_s</td>
</tr>
</tbody>
</table>

| summor | m_1 | m_2 | \ldots | m_r | n |

H_0: Sannolikheterna för A_1, \ldots, A_r är desamma i alla försöksserier.

Om H_0 är sann blir

$$Q = \sum_{i=1}^s \sum_{j=1}^r \frac{(x_{ij} - n_im_j/n)^2}{n_im_j/n}$$

e ett utfall av en approximativt $\chi^2((r-1)(s-1))$-fordelad stokastisk variabel.

Tumregel för god approximation: $n_ip^*_{obs} \geq 5$

2.6 Linjär regression

Låt Y_j vara $N(\alpha + \beta x_j, \sigma)$, $j = 1, \ldots, n$, och oberoende.

Skattade regressionslinjen $\beta^*_{obs} = \frac{S_{xy}}{S_{xx}}, \quad \alpha^*_{obs} = \bar{y} - \beta^*_{obs} \bar{x},$

$$S_{xy} = \left(\sum_{j=1}^n x_jy_j \right) - n\bar{x}\bar{y} = \sum_{j=1}^n (x_jy_j - x_j\bar{y} - \bar{x}y_j + \bar{x}\bar{y}) = \sum_{j=1}^n (x_j - \bar{x})(y_j - \bar{y}),$$

$$S_{xx} = \left(\sum_{j=1}^n x_j^2 \right) - n\bar{x}^2 = \sum_{j=1}^n (x_j^2 - 2x_j\bar{x} + \bar{x}^2) = \sum_{j=1}^n (x_j - \bar{x})^2$$
Fördelningar

a) \[
\beta^* = \frac{\sum_{j=1}^{n} (x_j - \bar{x})(Y_j - \bar{Y})}{\sum_{j=1}^{n} (x_j - \bar{x})^2}
\]
är \(N(\beta, \frac{\sigma}{\sqrt{S_{xx}}}) \)

b) \[
\alpha^* = \bar{Y} - \beta^* \bar{x}
\]
är \(N(\alpha, \sigma \sqrt{\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}}) \)
\(\chi^2\)-fördelningen

Tabellen ger det \(\chi^2_{\alpha}(f)\)-värde för vilket \(P(X > \chi^2_{\alpha}(f)) = \alpha\), där \(X \in \chi^2_{\alpha}(f)\)

<table>
<thead>
<tr>
<th>(f)</th>
<th>(\alpha)</th>
<th>.9995</th>
<th>.999</th>
<th>.995</th>
<th>.975</th>
<th>.95</th>
<th>.05</th>
<th>.025</th>
<th>.01</th>
<th>.005</th>
<th>.001</th>
<th>.0005</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.84</td>
<td>5.02</td>
<td>6.63</td>
<td>7.88</td>
<td>10.8</td>
<td>12.1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0</td>
<td>0.01</td>
<td>0.02</td>
<td>0.05</td>
<td>0.1</td>
<td>5.99</td>
<td>7.38</td>
<td>9.21</td>
<td>10.6</td>
<td>13.8</td>
<td>15.2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.02</td>
<td>0.07</td>
<td>0.11</td>
<td>0.22</td>
<td>0.35</td>
<td>7.81</td>
<td>9.35</td>
<td>11.3</td>
<td>12.8</td>
<td>16.3</td>
<td>17.7</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0.06</td>
<td>0.09</td>
<td>0.21</td>
<td>0.3</td>
<td>0.48</td>
<td>0.71</td>
<td>0.94</td>
<td>1.11</td>
<td>13.3</td>
<td>14.9</td>
<td>18.5</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.16</td>
<td>0.21</td>
<td>0.41</td>
<td>0.55</td>
<td>0.83</td>
<td>1.15</td>
<td>1.11</td>
<td>1.28</td>
<td>15.1</td>
<td>16.8</td>
<td>20.5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0.3</td>
<td>0.38</td>
<td>0.68</td>
<td>0.87</td>
<td>1.24</td>
<td>1.64</td>
<td>1.26</td>
<td>1.44</td>
<td>16.8</td>
<td>18.6</td>
<td>22.5</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0.48</td>
<td>0.6</td>
<td>0.99</td>
<td>1.24</td>
<td>1.69</td>
<td>2.17</td>
<td>1.41</td>
<td>1.65</td>
<td>18.5</td>
<td>20.3</td>
<td>24.3</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0.71</td>
<td>1.15</td>
<td>1.15</td>
<td>2.09</td>
<td>2.7</td>
<td>3.33</td>
<td>1.69</td>
<td>1.9</td>
<td>21.7</td>
<td>23.6</td>
<td>27.9</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>1.26</td>
<td>1.48</td>
<td>2.16</td>
<td>2.56</td>
<td>3.25</td>
<td>3.94</td>
<td>1.83</td>
<td>2.05</td>
<td>23.2</td>
<td>25.2</td>
<td>29.6</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1.59</td>
<td>1.83</td>
<td>2.6</td>
<td>3.05</td>
<td>3.82</td>
<td>4.57</td>
<td>1.97</td>
<td>2.19</td>
<td>24.7</td>
<td>26.8</td>
<td>31.3</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>1.93</td>
<td>2.21</td>
<td>3.07</td>
<td>3.57</td>
<td>4.4</td>
<td>5.23</td>
<td>2.1</td>
<td>2.33</td>
<td>26.2</td>
<td>28.3</td>
<td>32.9</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>2.31</td>
<td>2.62</td>
<td>3.57</td>
<td>4.11</td>
<td>5.01</td>
<td>5.89</td>
<td>2.24</td>
<td>2.47</td>
<td>27.7</td>
<td>29.8</td>
<td>34.5</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>2.7</td>
<td>3.04</td>
<td>4.07</td>
<td>4.66</td>
<td>5.63</td>
<td>6.57</td>
<td>2.37</td>
<td>2.61</td>
<td>29.1</td>
<td>31.3</td>
<td>36.1</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>3.11</td>
<td>3.48</td>
<td>4.6</td>
<td>5.23</td>
<td>6.26</td>
<td>7.26</td>
<td>2.54</td>
<td>2.75</td>
<td>30.6</td>
<td>32.8</td>
<td>37.7</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>3.54</td>
<td>3.94</td>
<td>5.14</td>
<td>5.81</td>
<td>6.91</td>
<td>7.96</td>
<td>2.63</td>
<td>2.88</td>
<td>32.5</td>
<td>34.3</td>
<td>39.2</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>3.98</td>
<td>4.42</td>
<td>5.7</td>
<td>6.41</td>
<td>7.56</td>
<td>8.67</td>
<td>2.76</td>
<td>3.02</td>
<td>33.4</td>
<td>35.7</td>
<td>40.8</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>4.44</td>
<td>4.9</td>
<td>6.26</td>
<td>7.01</td>
<td>8.23</td>
<td>9.39</td>
<td>2.89</td>
<td>3.15</td>
<td>34.8</td>
<td>37.2</td>
<td>42.3</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>4.91</td>
<td>5.41</td>
<td>6.84</td>
<td>7.63</td>
<td>8.91</td>
<td>10.1</td>
<td>2.89</td>
<td>3.32</td>
<td>36.2</td>
<td>38.6</td>
<td>43.8</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>5.4</td>
<td>5.92</td>
<td>7.43</td>
<td>8.26</td>
<td>9.59</td>
<td>10.8</td>
<td>3.14</td>
<td>34.2</td>
<td>37.6</td>
<td>40.5</td>
<td>45.3</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>5.9</td>
<td>6.45</td>
<td>8.03</td>
<td>8.9</td>
<td>10.3</td>
<td>11.6</td>
<td>3.27</td>
<td>35.5</td>
<td>38.9</td>
<td>41.4</td>
<td>46.8</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>6.4</td>
<td>6.98</td>
<td>8.64</td>
<td>9.54</td>
<td>11.2</td>
<td>12.3</td>
<td>3.35</td>
<td>39.8</td>
<td>40.3</td>
<td>42.8</td>
<td>48.3</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>6.92</td>
<td>7.53</td>
<td>9.26</td>
<td>10.2</td>
<td>11.7</td>
<td>13.1</td>
<td>3.52</td>
<td>38.1</td>
<td>41.6</td>
<td>44.2</td>
<td>49.7</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>7.45</td>
<td>8.08</td>
<td>9.89</td>
<td>10.9</td>
<td>12.4</td>
<td>13.8</td>
<td>3.64</td>
<td>39.4</td>
<td>43.0</td>
<td>45.6</td>
<td>51.2</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>7.99</td>
<td>8.65</td>
<td>10.5</td>
<td>11.5</td>
<td>13.1</td>
<td>14.6</td>
<td>3.76</td>
<td>40.6</td>
<td>44.3</td>
<td>46.9</td>
<td>52.6</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>8.54</td>
<td>9.22</td>
<td>11.2</td>
<td>12.2</td>
<td>13.8</td>
<td>15.4</td>
<td>38.9</td>
<td>41.9</td>
<td>45.6</td>
<td>48.3</td>
<td>54.</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>9.09</td>
<td>9.8</td>
<td>11.8</td>
<td>12.9</td>
<td>14.6</td>
<td>16.2</td>
<td>40.1</td>
<td>43.2</td>
<td>47.4</td>
<td>49.6</td>
<td>55.5</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>9.66</td>
<td>10.4</td>
<td>12.5</td>
<td>13.6</td>
<td>15.3</td>
<td>16.9</td>
<td>41.3</td>
<td>44.5</td>
<td>48.3</td>
<td>51.6</td>
<td>56.9</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>10.2</td>
<td>11.0</td>
<td>13.1</td>
<td>14.3</td>
<td>16.1</td>
<td>17.7</td>
<td>42.6</td>
<td>45.7</td>
<td>49.6</td>
<td>52.3</td>
<td>58.3</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>10.8</td>
<td>11.6</td>
<td>13.8</td>
<td>15.0</td>
<td>16.8</td>
<td>18.5</td>
<td>43.8</td>
<td>47.0</td>
<td>50.9</td>
<td>53.7</td>
<td>59.7</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>16.9</td>
<td>17.9</td>
<td>20.7</td>
<td>22.2</td>
<td>24.4</td>
<td>26.5</td>
<td>55.8</td>
<td>59.3</td>
<td>63.7</td>
<td>66.8</td>
<td>73.4</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>23.5</td>
<td>24.7</td>
<td>28.2</td>
<td>29.7</td>
<td>32.4</td>
<td>34.8</td>
<td>67.5</td>
<td>71.4</td>
<td>76.2</td>
<td>79.5</td>
<td>86.7</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>30.3</td>
<td>31.7</td>
<td>35.5</td>
<td>37.5</td>
<td>40.5</td>
<td>43.2</td>
<td>79.1</td>
<td>83.3</td>
<td>88.4</td>
<td>92.0</td>
<td>99.6</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>37.5</td>
<td>39.3</td>
<td>43.3</td>
<td>45.4</td>
<td>48.8</td>
<td>51.7</td>
<td>90.5</td>
<td>95.0</td>
<td>100.0</td>
<td>104.0</td>
<td>112.</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>44.8</td>
<td>46.5</td>
<td>51.2</td>
<td>53.5</td>
<td>57.2</td>
<td>60.4</td>
<td>102.</td>
<td>107.</td>
<td>112.</td>
<td>116.</td>
<td>125.</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>52.3</td>
<td>54.2</td>
<td>59.2</td>
<td>61.8</td>
<td>65.6</td>
<td>69.1</td>
<td>113.</td>
<td>118.</td>
<td>124.</td>
<td>128.</td>
<td>137.</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>59.9</td>
<td>61.9</td>
<td>67.3</td>
<td>70.1</td>
<td>74.2</td>
<td>77.9</td>
<td>124.</td>
<td>130.</td>
<td>136.</td>
<td>140.</td>
<td>149.</td>
</tr>
</tbody>
</table>