<table>
<thead>
<tr>
<th>Kurskod</th>
<th>Provkod</th>
<th>Tentamensdatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>E T 0 9 9 G</td>
<td>T 1 0 1</td>
<td>2 0 1 8 - 0 8 - 2 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kursnamn</th>
<th>Provnamn</th>
<th>Ort</th>
<th>Termin</th>
<th>Ämne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektroteknik GR (A), Digitalteknik med PLC</td>
<td>Skriftlig tentamen</td>
<td>Sundsvall</td>
<td>H18</td>
<td>Elektroteknik</td>
</tr>
</tbody>
</table>
Tentamen i Digitalteknik med PLC
Onsdag 22 augusti 2018

Ansvarig Lärare: Johan Sidén (Tel. 070 671 71 71)
Hjälpmedel: Valfri miniräknare;
Max Poäng: 21
Preliminära betygsgränser: E ≥ 11p, D ≥ 13p, C ≥ 15p, B ≥ 17p, A ≥ 19p

Glöm inte att motivera och redovisa alla beräkningar och bifoga alla egna figurer! Motivera alla slutsatser! Bevisa att du har förstått! Om du finner att information i uppgifter fattas gör du ett genomtänkt antagande!

1) Binär algebra, 6p
 a) Skriv det oktala talet 106.263 på talbasen 4. 3p
 b) Utför operationen \(-64_{10} + 96_{10}\) med hjälp av tvåkomplement och 8-bitars total ordlängd. Varje steg i beräkningen ska redovisas. 2p
 c) Beräkna summan av de två hexadecimala talen 0AEF_{16} och 10011_{16} och skriv svaret på hexadecimal form. 1p

2) Boolesk algebra: (Endast beräkningar, inga kretskonstruktioner!) 4p
 a) Visa att \((x \oplus xy) = x\bar{y}\). 2p
 b) Förenkla \(AD + BCD + \bar{A}C\) så långt som möjligt. (Operationer som XOR/XNOR får också användas för att förenkla nät.) 2p

3) Konstruera en krets, med sin bas i t-ripper, som realiserar funktionen som tillståndsgrafen i nedan figur visar. I den mån det är möjligt ska SP-uttryckena som fås av Karnaugh-diagrammen förenklas ytterligare, med Boolesk algebra och ev. XOR-grindar. 4p

4) Konstruera en 4-bitars adderare som tar in talen \((a_3, a_2, a_1, a_0)\) och \((b_3, b_2, b_1, b_0)\) och indikerar vart summan ges. Utgå gärna från 1-bitars heladderare enl. nedan figur (FA står för Full Adder): 2p
5) Beskriv kortfattat hur en AD-omvandlare av typen Successiv Approximation fungerar samt ange eventuella fördelar eller nackdelar med denna konstruktion. 2p

6) Beskriv kortfattat funktionaliteten hos, 2p
 a) En Multiplexer, 1p
 b) En Kodare, 1p

7) Avgör typen av krets till höger nedan och rita därefter in tidsdiagrammet för Q-signalen. Rita gärna i bilden på bifogat blad (Appendix II) men glöm i så fall inte att lämna in det bladet tillsammans med övriga lösningar! (Det gör naturligtvis lika bra att rita av tidsdiagrammen på eget papper och där föra in Q om du föredrar det.) 1p

![Diagram of a circuit and signal Q]
Appendix I:
Formelsamling för tentamen eller dugga i Digitalteknik

\[x + (y + z) = (x + y) + z \] (L10) (associativa lagarna)
\[x(yz) = (xy)z \] (L11)
\[x + y = y + x \] (L12) (kommutativa lagarna)
\[xy = yx \] (L13)
\[x(y + z) = xy + xz \] (L14) (distributiva lagarna)
\[x + yz = (x + y)(x + z) \] (L15)
\[x + xy = x \] (L16) (absorptionslagarna)
\[x(x + y) = x \] (L17)
\[xy + x'z = xy + x'z + yz \] (L18) (consensuslagarna)
\[(x + y)(x' + z) = (x + y)(x' + z)(y + z) \] (L19)
\[(x + y)' = x'y' \] (L20) (De Morgans lagar)
\[(xy)' = x' + y' \] (L21)

3-bitars binära koder:

<table>
<thead>
<tr>
<th></th>
<th>binär</th>
<th>Gray</th>
<th>one-hot (som krävs för en 3-bitars binär kod)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
<td>000</td>
<td>0000 0001</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>001</td>
<td>0000 0010</td>
</tr>
<tr>
<td>2</td>
<td>010</td>
<td>011</td>
<td>0000 0100</td>
</tr>
<tr>
<td>3</td>
<td>011</td>
<td>010</td>
<td>0000 1000</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>110</td>
<td>0001 0000</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>111</td>
<td>0010 0000</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>101</td>
<td>0100 0000</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>100</td>
<td>1000 0000</td>
</tr>
</tbody>
</table>

Karakteristiska ekvationer för vippor

<table>
<thead>
<tr>
<th>Typ</th>
<th>Karakteristisk ekv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>JK-vippa</td>
<td>Q+ = JQ' + K'Q</td>
</tr>
<tr>
<td>T-vippa</td>
<td>Q+ = TQ' + T'Q</td>
</tr>
<tr>
<td>D-vippa</td>
<td>Q+ = D</td>
</tr>
</tbody>
</table>
Logiska grindar och Vippor

<table>
<thead>
<tr>
<th>Namn/operator</th>
<th>Symbol</th>
<th>Funktion</th>
<th>Logisk operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCH, eng. AND</td>
<td>![AND Symbol]</td>
<td>![AND Truth Table]</td>
<td>$Z = X \cdot Y$</td>
</tr>
<tr>
<td>ELLER, eng. OR</td>
<td>![OR Symbol]</td>
<td>![OR Truth Table]</td>
<td>$Z = X + Y$</td>
</tr>
<tr>
<td>ICKE, eng. NOT</td>
<td>![NOT Symbol]</td>
<td>![NOT Truth Table]</td>
<td>$Z = X'$</td>
</tr>
<tr>
<td>NAND</td>
<td>![NAND Symbol]</td>
<td>![NAND Truth Table]</td>
<td>$Z = \overline{X \cdot Y}$ $Z = (X \cdot Y)'$</td>
</tr>
<tr>
<td>NOR</td>
<td>![NOR Symbol]</td>
<td>![NOR Truth Table]</td>
<td>$Z = \overline{X + Y}$ $Z = (X + Y)'$</td>
</tr>
<tr>
<td>XOR</td>
<td>![XOR Symbol]</td>
<td>![XOR Truth Table]</td>
<td>$Z = X \oplus Y$</td>
</tr>
</tbody>
</table>
\[
q^+ = D
\]

\[
q^+ = T \cdot \overline{q} + \overline{T} \cdot q
\]

Ascii tabell

<table>
<thead>
<tr>
<th>Bitarna 4 till 6</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hex (MSD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bitarna 0 till 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hex (LSD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>NUL</th>
<th>DLE</th>
<th>SP</th>
<th>0</th>
<th>@</th>
<th>P</th>
<th>q</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SOH</td>
<td>DC1</td>
<td>!</td>
<td>1</td>
<td>A</td>
<td>Q</td>
<td>a</td>
<td>q</td>
</tr>
<tr>
<td>2</td>
<td>STX</td>
<td>DC2</td>
<td>"</td>
<td>2</td>
<td>B</td>
<td>R</td>
<td>b</td>
<td>r</td>
</tr>
<tr>
<td>3</td>
<td>ETX</td>
<td>DC3</td>
<td>#</td>
<td>3</td>
<td>C</td>
<td>S</td>
<td>c</td>
<td>s</td>
</tr>
<tr>
<td>4</td>
<td>EOT</td>
<td>DC4</td>
<td>$</td>
<td>4</td>
<td>D</td>
<td>T</td>
<td>d</td>
<td>t</td>
</tr>
<tr>
<td>5</td>
<td>ENQ</td>
<td>NAK</td>
<td>%</td>
<td>5</td>
<td>E</td>
<td>U</td>
<td>e</td>
<td>u</td>
</tr>
<tr>
<td>6</td>
<td>ACK</td>
<td>SYN</td>
<td>&</td>
<td>6</td>
<td>F</td>
<td>V</td>
<td>f</td>
<td>v</td>
</tr>
<tr>
<td>7</td>
<td>BEL</td>
<td>ETB</td>
<td>*</td>
<td>7</td>
<td>G</td>
<td>W</td>
<td>g</td>
<td>w</td>
</tr>
<tr>
<td>8</td>
<td>BS</td>
<td>CAN</td>
<td>(</td>
<td>8</td>
<td>H</td>
<td>X</td>
<td>h</td>
<td>x</td>
</tr>
<tr>
<td>9</td>
<td>HT</td>
<td>EM</td>
<td>)</td>
<td>9</td>
<td>I</td>
<td>Y</td>
<td>i</td>
<td>y</td>
</tr>
<tr>
<td>A</td>
<td>LF</td>
<td>SUB</td>
<td>*</td>
<td></td>
<td>J</td>
<td>Z</td>
<td>j</td>
<td>z</td>
</tr>
<tr>
<td>B</td>
<td>VT</td>
<td>ESC</td>
<td>+</td>
<td></td>
<td>K</td>
<td>[</td>
<td>k</td>
<td>[</td>
</tr>
<tr>
<td>C</td>
<td>PF</td>
<td>FS</td>
<td>.</td>
<td></td>
<td>L</td>
<td>\</td>
<td>l</td>
<td>\</td>
</tr>
<tr>
<td>D</td>
<td>CR</td>
<td>GS</td>
<td>-</td>
<td></td>
<td>M</td>
<td>]</td>
<td>m</td>
<td>]</td>
</tr>
<tr>
<td>E</td>
<td>SO</td>
<td>RS</td>
<td>></td>
<td></td>
<td>N</td>
<td>^</td>
<td>n</td>
<td>^</td>
</tr>
<tr>
<td>F</td>
<td>SI</td>
<td>US</td>
<td>?</td>
<td></td>
<td>O</td>
<td>_</td>
<td>o</td>
<td>_</td>
</tr>
</tbody>
</table>

DEL
Appendix II:

Figur där du kan rita in signalen för Q i Uppgift 6.

Om du använder denna, glöm inte att lämna in detta blad tillsammans med dina övriga lösningar!