<table>
<thead>
<tr>
<th>Kurskod</th>
<th>Provkod</th>
<th>Tentamensdatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0051G</td>
<td>0011</td>
<td>2018-11-06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kursnamn</th>
<th>Sociologi GR (A), Risker och kriser i samhället</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provnamn</td>
<td>Sociologisk metod (kvantitativ)</td>
</tr>
<tr>
<td>Ort</td>
<td>Östersund</td>
</tr>
<tr>
<td>Termin</td>
<td>H18</td>
</tr>
<tr>
<td>Ämne</td>
<td>Sociologi</td>
</tr>
</tbody>
</table>
Skriftlig tentamen
Sociologi GR(A) – Risker och kriser i samhället, SO051G
Delkurs 2 – Sociologisk metod. 7,5hp.
2018-11-06, Skrivtid: 4 timmar
Olov Hemmingsson

Tillåtna hjälpmedel: icke-grafritande miniräknare

Att tänka på:

1. Läs igenom var och en av frågorna grundligt, för att undvika onödiga missförstånd.
2. Samtliga svar fylls i på lösa blad. Du lämnar således inte in själva tentamensdokumentet.
4. Studenter vars förstaspråk är annat än Svenska tillåts medtaga ett relevant lexikon.
5. Redogör alltid för hela processen då uträkningar krävs. På så vis kan det i vissa fall bli aktuellt med poäng även då den slutgiltiga siffran är inkorrekt.
6. Formelblad och tabeller återfinns i slutet av dokumentet.

Tentamen omfattar totalt 18 poäng. För att passera gränsen för ett godkänt betyg (E) krävs att 50% av dina svar är korrekt.

Om oklarheter skulle uppstå, kontakta Jens Ljungdahl på 070-3070269.

Lycka till!

Mvh/Olov
Fråga # 1 (1,5p)
Ge exempel på en slutsats som är:

a) Induktiv
b) Deduktiv

Observera att aktuellt exempel inte skall förekomma i kurslitteraturen eller ha avhandlats vid kursens föreläsningar.

Fråga # 2 (1,5p)
Det största problemet då bortfall förekommer vid datainsamling är i huvudregel att sådant tenderar att vara systematiskt. Förklara vad detta innebär i praktiken och vilka konsekvenser systematiskt bortfall kan få för eventuella slutsatser.

Fråga # 3 (2p)
Nedan anges exempel på ett antal variabler:

<table>
<thead>
<tr>
<th>Individ</th>
<th>Körkort</th>
<th>Inställning till monarki</th>
<th>Vikt (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ja</td>
<td>1=Mycket negativ</td>
<td>72</td>
</tr>
<tr>
<td>2</td>
<td>Ja</td>
<td>2=Negativ</td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td>Nej</td>
<td>5=Mycket positiv</td>
<td>101</td>
</tr>
<tr>
<td>4</td>
<td>Nej</td>
<td>4=Positiv</td>
<td>82</td>
</tr>
<tr>
<td>5</td>
<td>Ja</td>
<td>3=Neutral</td>
<td>72</td>
</tr>
<tr>
<td>6</td>
<td>Nej</td>
<td>5=Mycket positiv</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td>Ja</td>
<td>1=Mycket negativ</td>
<td>81</td>
</tr>
</tbody>
</table>

a) Uppge skalnivå för var och en av dessa
b) Ange variabeltyp (kvalitativ/kvantitativ)
c) Uppge huruvida respektive variabel är diskret eller kontinuerlig

Fråga # 4 (3p)
Vid en stickprovsundersökning baserad på obundet slumpmässigt urval (n=240) uppgjer 8,2% av invånarna i en medelstor svensk stad att de stödjer idén om att bygga ut den lokala simhallen.

Använd ovanstående siffror till att dra en lämplig slutsats gällande populationens uppfattning i frågan.
Fråga # 5 (3,5p)

Resultat:

<table>
<thead>
<tr>
<th>Individ:</th>
<th>Antal sjukdagar:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

Använd en lämplig analysmetod för att testa hypotesen.

Fråga # 6 (4p)

En mindre observationsstudie ger nedanstående resultat:

<table>
<thead>
<tr>
<th>Antal konsumerade groggar:</th>
<th>Antal yttrade ord per tio sekunder:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
</tr>
</tbody>
</table>

Beräkna sambandet mellan variblerna och redogör för din tolkning av detta.
Fråga # 7 (2,5p)

En körning i SPSS ger följande resultat:

Föredragen underhållning * Arbetslöshet Crosstabulation

<table>
<thead>
<tr>
<th>Föredragen underhållning</th>
<th>Arbetslös</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nej</td>
<td>Ja</td>
<td>Total</td>
</tr>
<tr>
<td>Föredragen underhållning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Film</td>
<td>Count</td>
<td>24</td>
<td>54</td>
</tr>
<tr>
<td>% within Arbetslös</td>
<td></td>
<td>60,0%</td>
<td>77,1%</td>
</tr>
<tr>
<td>Serietidningar</td>
<td>Count</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>% within Arbetslös</td>
<td></td>
<td>40,0%</td>
<td>22,9%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>40</td>
<td>70</td>
</tr>
<tr>
<td>% within Arbetslös</td>
<td></td>
<td>100,0%</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

Chi-Square Tests

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>df</th>
<th>Asymptotic Significance (2-sided)</th>
<th>Exact Sig. (2-sided)</th>
<th>Exact Sig. (1-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Chi-Square</td>
<td>3,626</td>
<td>1</td>
<td>.057</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuity Correction</td>
<td>2,843</td>
<td>1</td>
<td>.092</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likelihood Ratio</td>
<td>3,555</td>
<td>1</td>
<td>.059</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisher's Exact Test</td>
<td></td>
<td></td>
<td>.080</td>
<td>.047</td>
<td></td>
</tr>
<tr>
<td>Linear-by-Linear Association</td>
<td>3,593</td>
<td>1</td>
<td>.058</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N of Valid Cases</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 11.64.
b. Computed only for a 2x2 table

Redogör för din tolkning av informationen.
Aritmetiskt medelvärde

\[x = \frac{\sum x}{n} \]

Standardavvikelse

\[s = \sqrt{\frac{\sum (x - \bar{x})^2}{n-1}} \]

Medelfel runt ett medelvärde

\[SE = \frac{s}{\sqrt{n}} \]

Medelfel runt en proportion

\[SE = \sqrt{\frac{p(1-p)}{n}} \]

Uppställning av konfidentsintervall utifrån z-fördelningen

\[\bar{x} \pm z \times SE \]

\[p \pm z \times SE \]

Kritiska z-värden

<table>
<thead>
<tr>
<th>Konfidentsnivå</th>
<th>Z-värde</th>
</tr>
</thead>
<tbody>
<tr>
<td>68,2%</td>
<td>1</td>
</tr>
<tr>
<td>95%</td>
<td>1,96</td>
</tr>
<tr>
<td>99%</td>
<td>2,58</td>
</tr>
<tr>
<td>99,9%</td>
<td>3,29</td>
</tr>
</tbody>
</table>

Chi²-test

\[\chi^2 = \sum \frac{(O - E)^2}{E} \]
T-test

Univariat

\[t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} \]

Bivariat (då variansen mellan grupperna antas vara olika)

\[t = \frac{\bar{x}_1 - \bar{x}_2}{\frac{s_1^2 + s_2^2}{\sqrt{n_1 \cdot n_2}}} \]

Bivariat (då variansen mellan grupperna antas vara lika)

\[t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{s^2 \cdot \frac{n_1 + n_2}{n_1 \cdot n_2}}} \]

Pearson’s korrelationskoefficient

\[r = \frac{\sum(x - \bar{x}) \cdot (y - \bar{y})}{\sqrt{\sum(x - \bar{x})^2 \cdot \sum(y - \bar{y})^2}} \]

Linjär regression

\[y = a + bx \]

\[b = \frac{\sum(x - \bar{x}) \cdot (y - \bar{y})}{\sum(x - \bar{x})^2} \]

\[a = \bar{y} - b \cdot \bar{x} \]
Gränsvärden i Chi²-fördelningen

![Chi²-distribution diagram](image)

<table>
<thead>
<tr>
<th>Frihetsgrader</th>
<th>Sannolikhet P %</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>0,1</td>
</tr>
<tr>
<td>1</td>
<td>3,841</td>
<td>6,635</td>
<td>10,828</td>
</tr>
<tr>
<td>2</td>
<td>5,991</td>
<td>9,210</td>
<td>13,816</td>
</tr>
<tr>
<td>3</td>
<td>7,815</td>
<td>11,345</td>
<td>16,266</td>
</tr>
<tr>
<td>4</td>
<td>9,488</td>
<td>13,277</td>
<td>18,467</td>
</tr>
<tr>
<td>5</td>
<td>11,070</td>
<td>15,086</td>
<td>20,515</td>
</tr>
<tr>
<td>6</td>
<td>12,592</td>
<td>16,812</td>
<td>22,458</td>
</tr>
<tr>
<td>7</td>
<td>14,067</td>
<td>18,475</td>
<td>24,322</td>
</tr>
<tr>
<td>8</td>
<td>15,507</td>
<td>20,090</td>
<td>26,125</td>
</tr>
<tr>
<td>9</td>
<td>16,919</td>
<td>21,666</td>
<td>27,877</td>
</tr>
<tr>
<td>10</td>
<td>18,307</td>
<td>23,209</td>
<td>29,588</td>
</tr>
<tr>
<td>11</td>
<td>19,675</td>
<td>24,725</td>
<td>31,264</td>
</tr>
<tr>
<td>12</td>
<td>21,026</td>
<td>26,217</td>
<td>32,909</td>
</tr>
<tr>
<td>13</td>
<td>22,362</td>
<td>27,688</td>
<td>34,528</td>
</tr>
<tr>
<td>14</td>
<td>23,685</td>
<td>29,141</td>
<td>36,123</td>
</tr>
<tr>
<td>15</td>
<td>24,996</td>
<td>30,578</td>
<td>37,697</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frihetsgrader</th>
<th>Sannolikhet P %</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>0,1</td>
</tr>
<tr>
<td>16</td>
<td>26,296</td>
<td>32,000</td>
<td>39,252</td>
</tr>
<tr>
<td>17</td>
<td>27,587</td>
<td>33,409</td>
<td>40,790</td>
</tr>
<tr>
<td>18</td>
<td>28,869</td>
<td>34,805</td>
<td>42,312</td>
</tr>
<tr>
<td>19</td>
<td>30,144</td>
<td>36,191</td>
<td>43,820</td>
</tr>
<tr>
<td>20</td>
<td>31,410</td>
<td>37,566</td>
<td>45,315</td>
</tr>
<tr>
<td>21</td>
<td>32,671</td>
<td>38,932</td>
<td>46,797</td>
</tr>
<tr>
<td>22</td>
<td>33,924</td>
<td>40,289</td>
<td>48,268</td>
</tr>
<tr>
<td>23</td>
<td>35,172</td>
<td>41,638</td>
<td>49,728</td>
</tr>
<tr>
<td>24</td>
<td>36,415</td>
<td>42,980</td>
<td>51,179</td>
</tr>
<tr>
<td>25</td>
<td>37,652</td>
<td>44,314</td>
<td>52,620</td>
</tr>
<tr>
<td>26</td>
<td>38,885</td>
<td>45,642</td>
<td>54,052</td>
</tr>
<tr>
<td>27</td>
<td>40,113</td>
<td>46,963</td>
<td>55,476</td>
</tr>
<tr>
<td>28</td>
<td>41,337</td>
<td>48,278</td>
<td>56,892</td>
</tr>
<tr>
<td>29</td>
<td>42,557</td>
<td>49,588</td>
<td>58,302</td>
</tr>
<tr>
<td>30</td>
<td>43,773</td>
<td>50,892</td>
<td>59,703</td>
</tr>
</tbody>
</table>
Gränsvärden i T-fördelningen (fortsätter på nästa sida)

![Diagram of the t-distribution]

<table>
<thead>
<tr>
<th>Frihets-</th>
<th>Sannolikhet $P%$</th>
<th>Ensidigt test</th>
<th>0,5</th>
<th>0,1</th>
<th>0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>grader</td>
<td>5</td>
<td>2,5</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6,314</td>
<td>12,706</td>
<td>31,821</td>
<td>63,657</td>
<td>318,310</td>
</tr>
<tr>
<td>6,965</td>
<td>9,925</td>
<td>22,326</td>
<td>31,598</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,541</td>
<td>5,841</td>
<td>10,213</td>
<td>12,924</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,747</td>
<td>4,604</td>
<td>7,173</td>
<td>8,610</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,365</td>
<td>4,032</td>
<td>5,893</td>
<td>6,869</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,143</td>
<td>3,707</td>
<td>5,208</td>
<td>5,959</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,998</td>
<td>3,499</td>
<td>4,785</td>
<td>5,408</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,896</td>
<td>3,355</td>
<td>4,501</td>
<td>5,041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,821</td>
<td>3,250</td>
<td>4,297</td>
<td>4,781</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,764</td>
<td>3,169</td>
<td>4,144</td>
<td>4,587</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,718</td>
<td>3,106</td>
<td>4,025</td>
<td>4,437</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,681</td>
<td>3,055</td>
<td>3,930</td>
<td>4,318</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,650</td>
<td>3,012</td>
<td>3,852</td>
<td>4,221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,624</td>
<td>2,977</td>
<td>3,787</td>
<td>4,140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,602</td>
<td>2,947</td>
<td>3,733</td>
<td>4,073</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tvåsidigt test
<table>
<thead>
<tr>
<th>Frihets-</th>
<th>Sannolikhet P %</th>
</tr>
</thead>
<tbody>
<tr>
<td>grader</td>
<td>Ensidigt test</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>1,746</td>
</tr>
<tr>
<td>16</td>
<td>1,740</td>
</tr>
<tr>
<td>17</td>
<td>1,734</td>
</tr>
<tr>
<td>19</td>
<td>1,729</td>
</tr>
<tr>
<td>20</td>
<td>1,725</td>
</tr>
<tr>
<td>21</td>
<td>1,721</td>
</tr>
<tr>
<td>22</td>
<td>1,717</td>
</tr>
<tr>
<td>23</td>
<td>1,714</td>
</tr>
<tr>
<td>24</td>
<td>1,711</td>
</tr>
<tr>
<td>25</td>
<td>1,708</td>
</tr>
<tr>
<td>26</td>
<td>1,706</td>
</tr>
<tr>
<td>27</td>
<td>1,703</td>
</tr>
<tr>
<td>28</td>
<td>1,701</td>
</tr>
<tr>
<td>29</td>
<td>1,699</td>
</tr>
<tr>
<td>30</td>
<td>1,697</td>
</tr>
<tr>
<td>40</td>
<td>1,684</td>
</tr>
<tr>
<td>60</td>
<td>1,671</td>
</tr>
<tr>
<td>120</td>
<td>1,658</td>
</tr>
<tr>
<td>∞</td>
<td>1,645</td>
</tr>
</tbody>
</table>