<table>
<thead>
<tr>
<th>Kurskod</th>
<th>Provkod</th>
<th>Tentamensdatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA078G</td>
<td>T110</td>
<td>2019-01-09</td>
</tr>
</tbody>
</table>

Kursnamn: Matematik GR (B), Flervariabelanalys

Provnamn: Skriftlig tentamen

Ort: Sundsvall
Tentamen

Lösningar skall presenteras på ett sådant sätt att räkningar och resonemang blir lätt att följa. Ausluta varje lösning med ett tydligt svar!

För att bli godkänd på kursen krävs att du uppnår minst 10 poäng och att du uppfyller kursens lärandemål. Om du behandlar den frivilliga uppgiften 9 väl så kan ditt betyg höjas ett steg. Lycka till!

1. Hitta de globala extrempunktarna för funktionen \(f(x, y) = \frac{xy}{x+y} \) på trapetsen given genom \(x \geq 0, y \geq 0 \) och \(1 \leq x + y \leq 2 \). (3p)

2. a) Integrera \(xy \) över triangeln med hörn i \((0, 0), (0, 1)\) och \((-1, 1)\).
 b) Integrera \(x \) över området givet av \(x^2 + y^2 \leq 4 \), \(x \leq 0 \) och \(y \geq 0 \). (3p)

3. Beskriv fältlinjerna till vektorfältet
 \[\mathbf{F} = xi - \frac{y}{4}j. \]
 Rita en skiss för vektorfältet och dess fältlinjer. (3p)

4. Antag att en funktion \(f(x) \) i alla \(x \in \mathbb{R} \) är glatt av första ordningen (d.v.s. att \(f \) och derivatan \(f' \) är kontinuerliga) och att \(a < b \). Beräkn linjeintegralerna
 a) \(\int_C \mathbf{i} \cdot d\mathbf{r} \) och b) \(\int_C \mathbf{j} \cdot d\mathbf{r} \),
 där \(C \) är avsnittet av \(f \)'s graf \(y = f(x) \) som ligger mellan \((a, f(a))\) och \((b, f(b))\), orienterat så att \((a, f(a))\) är första och \((b, f(b))\) är sista punkten. (3p)

5. Hitta flödet av vektorfältet \(\mathbf{F} = xi + yj + zk \) uppåt genom ytan given som grafen av \(z = xy \) över kvadraten \(-1 \leq x \leq 1, -1 \leq y \leq 1 \). (3p)
6. Hitta en potential till vektorfältet
 \[\mathbf{F} = (x^2 - 2x) \mathbf{i} + (6y - 2z) \mathbf{j} + 2(xz - y) \mathbf{k}. \]
 Vad är linjeintegralen av \(\mathbf{F} \) över kurvan parametriserad genom
 \(\mathbf{r}(t) = \cos t \mathbf{j} + \sin t \mathbf{k}, \ 0 \leq t \leq \pi \)?

7. Låt \(\mathbf{F} \) vara ett glatt vektorfält på \(\mathbb{R}^3 \). Bevisa identiteten
 \[\nabla \cdot (\nabla \times \mathbf{F}) = 0. \]

8. Bestäm
 \[\int_C (y^2 - \sin x)dx + (2xy + x + y^5)dy, \]
 där \(C \) är den medurs orienterade randen av en fjärdedels skiva \(x^2 + y^2 < 4, \ x < 0, \ y > 0. \)

9. (frivillig uppgift) a) Visa att vektorfältet
 \[\mathbf{F} = -\frac{y}{x^2 + y^2} \mathbf{i} + \frac{x}{x^2 + y^2} \mathbf{j} \]
 uppfyller integrabilitetsvillkoret \(\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x} \) på \(\mathbb{R}^2 \setminus \{(0,0)\} \) (d.v.s. på planet utan origo).
 b) Beräkna linjeintegralen \(\int_C \mathbf{F} \cdot d\mathbf{r} \) där \(C \) betecknar enhetscirkeln \(x^2 + y^2 = 1 \) orienterad moturs.
 c) Härdled att \(\mathbf{F} \) inte har någon potential definierad på \(\mathbb{R}^2 \setminus \{(0,0)\} \).