<table>
<thead>
<tr>
<th>Kurskod</th>
<th>Provkod</th>
<th>Tantamensdatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY003X</td>
<td>T100</td>
<td>2019-01-14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kursnamn</th>
<th>Provnamn</th>
<th>Ort</th>
<th>Termin</th>
<th>Ämne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fysik BE, Baskurs 1 i fysik</td>
<td>Deltentamen 1</td>
<td>Östersund</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tentamen FY003X, Fysik 1, del 1.
Skrivtid 5 timmar
Maxpoäng: 30 p
Gräns för godkänt: Totalt minst 15 p, varav minst 4 p på del 1 och minst 9 p på del 2.

Del 1: Begreppsfrågor som besvaras kortfattat. Varje uppgift som besvaras helt korrekt ger en poäng. Totalt på denna del kan 10 poäng uppnås.

Skriv er kod på samtliga inlämnade blad.

Del 1

1. Ange i tabellen SI-enheten för motsvarande storhet. (1p)

<table>
<thead>
<tr>
<th>Storhet</th>
<th>Enhet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sträcka</td>
<td></td>
</tr>
<tr>
<td>Tyngd</td>
<td></td>
</tr>
</tbody>
</table>

2. En lampa hänger i ett snöre enligt figur. Sätt ut de krafter som verkar på lampan. (1p)

3. Konstruera kraftresultanten grafiskt. (1p)

FY003X, Fysik 1 del 1 • 2019-01-14
Ansvariga lärare: Jon Kjellsson och Magnus Hummelgård

 a) Vad händer med gasens massa? (0,5p)
 b) Vad händer med gasens temperatur? (0,5p)

6. Bil A kör med hastigheten 80 km/h och bil B kör med 40 km/h. Bil A väger hälften så mycket som Bil B.
 a) Har de lika eller har någon bil större kinetisk energi (rörelseenergi)? (0,5p)
 b) Motivera din slutsats i a) (0,5p)

7. Ge ett exempel på när ett föremål har hastigheten noll men accelerationen inte är noll. (1p)

8. Figuren kommer från elektricitetslaborationen där ni genom att mäta ström och spänning kunde beräkna resistansen hos två resistorer. De två tomma cirklarna symboliserar en amperemeter och en voltmetar. Markera i figuren med "V" (för voltmetar) respektive "A" (för amperemeter) vilken som är vilken. (1p)

9. En boll släpps från vila och får falla från höjden 10,0 m ner till marken. Just innan bollen slår ner i marken har den rörelseenergin 60,0 J. Om bollen faller utan luftfriktion hur stor lägesenergi har bollen
 a) straxt innan den släpps på 10,0 meters höjd? (0,5p)
 b) när bollen är 2,5 m ovanför marken? (0,5p)

10. En basärssstudent lägger en kall vinterdag (-21°C) ut en träbit (1 kg) och en lika tung bit stål i snön. De får ligga länge tills de fått samma temperatur som utomhusluften.
 a) Studenten tar sedan i de olika föremålen med handen. Vilket föremål känns kallast att ta i? (0,5p)
 b) Varför känns det föremålet kallast? (0,5p)
11. Släden väger 25,0 kg. Den dras horisontellt framåt över isen på en sjö. Friktionskraften på släden är så liten som 12 N. Beräkna vilket arbete som krävs för att dra släden 50,0 m tvärs över sjön?

12. Kraften \(F \) i figuren har storleken 49 N. Vinkeln \(\alpha \) är 36\(^\circ\). Beräkna kraftens \(F \)'s komponent i horisontell riktning (\(F_x \) i figuren)?

13. En boll släpps från vila (vertikalt) och får falla rakt ner. Rita av nedanstående \(v_y-t \)-diagram på ditt svarsblad och rita in hur bollens hastighet förändras. (positiv riktning ska väljas uppåt)

14. Beräkna hur mycket energi som avgas då 10 liter varmvatten med temperaturen 60 \(^\circ\)C svalnar till rumstemperatur (20 \(^\circ\)C).

15. Figuren nedan visar dimensionerna hos ett träblock. Träblocket väger 6,3 kg. Beräkna träets densitet uttryckt i kg/m\(^3\).

17. På en av kursens laborationer fick du parallellkoppla två resistor och ansluta dem till spänningskälla enligt figuren. Spänningskällan ställdes in på spänningen 5,0 V. Därefter mättes I_2 till 49,2 mA och I till 61,5 mA.

a) Beräkna resistansen R_2
 (1p)

b) Beräkna resistansen R_1
 (1p)

18. En skridskoåkare, som väger 75 kg, har nått hastigheten 15 m/s. Han glider sedan av bara farten 120 m innan han stannar.

 a) Beräkna skridskoåkarens rörelseenergi då hastigheten är 15 m/s.
 (1p)

 b) Beräkna den genomsnittliga bromskraft som verkar på åkaren under uppbrosmningen.
 (1p)

19. I en av kursens laborationer visade ni att Arkimedes princip gäller genom att sänka ner en vikt i vatten enligt figur till höger. Vikten i figuren har massan 101 g. I figur A visar dynamometeren 1,01 N och i figur B visar den 0,89 N.

 Volymen i mätglaset är 94 ml i figur A och 106 ml i glas B.

 a) Beräkna lyftkraften från vattnet på vikten.
 (1p)

 b) Beräkna viktens densitet.
 (1p)

 a) Vem vann tävlingen? En korrekt motivering krävs!
 (1p)

 b) Beräkna hur många sekunder efter som tvåan kom fram.
 (1p)