<table>
<thead>
<tr>
<th>Kurskod</th>
<th>Provkod</th>
<th>Tentamensdatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT153G</td>
<td>T101</td>
<td>2019-01-11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kursnamn</th>
<th>Provnamn</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datalektik GR (A), Nätverkateknik A</td>
<td>Tentamen P2, delkurs 1</td>
<td>Sundsvall</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ämne</th>
</tr>
</thead>
</table>
Information till er som skriver omtentamen

Obs. Denna tentamen täcker in båda provmomenten, T101 och T201.
För er som ska skriva papperstentamen för första delkursen T101 (Introductions to Networks) besvara endast följande frågor:

- Fråga 1
- Fråga 2
- Fråga 3
- Fråga 4
- Fråga 5

För er som ska skriva papperstentamen för andra delkursen T201 (Routing and Switching Essentials) besvara endast följande frågor:

- Fråga 6
- Fråga 7
- Fråga 8
- Fråga 9
- Fråga 10
Final Exam
DT153G Network Technology A

Magnus Eriksson
magnus.eriksson@miun.se
Phone: 010 142 8740

Lennart Franked
lennart.franked@miun.se
Phone: 010 142 8683

2019-01-11

Instructions

Carefully read the questions before you start answering them. Note the time limit of the exam and plan your answers accordingly. Only answer the question. The questions are not sorted by difficulty. Clearly show which answer you are giving your solution to. Always motivate your answers and show your calculations.

Time 5 hours.

Exam Aids Dictionary.

Maximum points 30

Questions 10

Preliminary grades

The following grading criteria applies: E ≥ 9p, D ≥ 13p, C ≥ 18p, B ≥ 22p, A ≥ 27p. Scoring will be based on level of depth shown in your answer. To pass this exam you must have shown proficient knowledge in all the intended learning outcomes (ILO) covered in this exam. Each questions ILO affiliation is shown as (ILO: #). The grade limit given is preliminary per ILO. Final grade is set based on your performance on each individual ILO.

Covered ILO

This exam covers the following Intended Learning Outcomes (ILO)

- ILO: 1 – Describe the different levels in the TCP/IP and OSI models.
- ILO: 3 – Calculate IP addresses and subnet masks.
- ILO: 4 – Calculate bandwidth capacity and usage.
- ILO: 5 – Compare common routing protocols that are used within autonomous systems.
- ILO: 6 – Discuss and apply different technologies for reducing the need of public IPv4 addresses.
- ILO: 7 – Calculate access lists for controlling access to network functions and segments.
Questions

The questions below are not given in any particular order.

(3p) 1. (ILO: 1) What is the problem if a frame is too long or too short for the channel used? What will happen to them?

(3p) 2. (ILO: 1) Explain contention-based MAC, what does it mean, how does it work and give an example of an implementation.

(3p) 3. (ILO: 3) Subnet the 18.10.16.0/20 network such that the following criteria is met.
 - There should be one network that can hold 2000 hosts
 - There should be two networks that can host 500 hosts
 - There should be three networks that can hold 128 hosts
 - There should be four networks that can hold 2 hosts (point-to-point links)

How many available available ip-addresses will there be left after you have performed the subnetting?

(3p) 4. (ILO: 3) Discuss the benefits of VLSM and CIDR.

(3p) 5. (ILO: 4) Show all calculations:
 (a) Assume that you are watching a 450 Mbyte movie clip of 60 minutes play time. How large network goodput (application layer throughput, exclusive of headers) in Mbit/s is required to allow full quality streaming without stalling?
 (b) Assume that up to eight people may be watching the same video simultaneously using multicasting. How large network goodput in Mbit/s is required from the video server?
 (c) Assume that the video stream is transferred over UDP with an 8 byte header per UDP datagram, over IPv4 packets with 20 bytes header per IP packet, and over Ethernet with Ethernet payload of 974 bytes, and 26 byte overhead (header, trailer and interframe gap) per Ethernet frame. What throughput (inclusive of headers, measured between the physical layer and the data link layer) should be delivered to one user for full quality streaming?

(3p) 6. (ILO: 5) Compare distance vector routing protocols with link state routing protocols.

(3p) 7. (ILO: 5) Motivate why we need to distinguish between IGP and EGP? Exemplify.

(3p) 8. (ILO: 6) Explain how a client ensures that it has a unique IPv6 address after it has been configured using the SLAAC allocation method? Why is this process necessary? How is this solved when using regular DHCP?

(3p) 9. (ILO: 6) Explain to your friend who haven’t studied computer networking
 - What inside, outside, global and local means when speaking of NAT
 - Account for at least two problems that NAT introduces into a network

(3p) 10. (ILO: 7) Create one access list that includes only one ip address and one wildcard mask, such that it will only permit the addresses given below. Confirm that your ACL work.
 - All even ip addresses in the subnet 252.175.13.0/24