<table>
<thead>
<tr>
<th>Kurskod</th>
<th>Provkod</th>
<th>Tentamensdatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT030A</td>
<td>T101</td>
<td>2019-01-11</td>
</tr>
</tbody>
</table>

Kursnamn: Data teknik AV, Inbyggda datorsystem och reallidslämpligt...

Provnamn: Skriftig tentamen

Ort: Sundsvall

Termin:

Ämne:
Written examination
DT030A, Networked embedded computer systems with real-time applications

Date: 2019-01-11

The written exam is planned to be checked and graded within 15 working days.

To achieve full score on the assignments you have to thoroughly explain every part of your solutions.

No aids allowed.

1. (3p)
 Explain the main difference between hard, soft and firm real-time systems.

2. (2+2+2p)
 Deadlocks is something we want to avoid occurring in our solutions.
 a) What is a deadlock?
 b) What four criteria have been fulfilled when we run into a deadlock?
 c) Give some idea how to avoid running into a deadlock for each of the four criteria.

3. (4p)
 Explain the functionality and the advantage of semaphore's used for mutual exclusion in a computer system.

4. (2+2p)
 When you want to avoid deadlock in a system the solution can be to use Banker's algorithm developed by Dijkstra 1965.
 If you study the instance below, could we approve or do we have to disallow the questions asked.

 \[
 \begin{array}{c|c|c}
 \text{Has} & \text{Max} \\
 \hline
 A & 2 & 6 \\
 B & 2 & 8 \\
 C & 2 & 6 \\
 D & 1 & 3 \\
 \end{array}
 \]

 Free=3

 a) Process C want to allocate two (2) resources.
 b) Process D want to allocate two (2) resource.
5. (4p) Explain and discuss differences, similarities together with pros and cons when comparing embedded system solutions built on a SoC (= System on Chip) as the Raspberry Pi compared to a specifically dedicated system solutions like the microcontroller Arduino, ASICs (= Application Specific Integrated Circuit) or FPGA (= Field Programmable Gate Array) solutions.

6. (6p) When we are studying some classical IPC problems we have found a problem named **The Sleeping Barber**.

 Explain the basic idea of this classical IPC problem and a way to manage the mutual exclusion in such a system.

7. (8p) Suppose that the following set of jobs is given:

<table>
<thead>
<tr>
<th>Process</th>
<th>Ci (ms), worst case execution time</th>
<th>Ti (ms), period time</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>p2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>p3</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

 (a) Can we assume that the processes in the set above are schedulable with Rate Monotonic Scheduling (RMS)?

 (b) What is the resulting schedule (Gantt diagram) of the RMS scheduling policy with the set above?

 \[U = \sum_{i=1}^{n} \frac{c_i}{T_i} \quad u_{BM} = n \left(2^\frac{1}{n} - 1 \right) \]