<table>
<thead>
<tr>
<th>Kurskod</th>
<th>Provkod</th>
<th>Tentamensdatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA133G</td>
<td>Ö100</td>
<td>2019-01-09</td>
</tr>
</tbody>
</table>

Kursnamn: Matematik GR (A), Envariabelanalys 1
Provnamn: Tentamen
Ort: Östersund
Termin:
Ämne:
1. Lös ekvationerna
 a) \(\ln(2x^2 + 6x + 1) = 0 \)
 b) \(\sin \left(2x - \frac{\pi}{2} \right) = \frac{1}{2} \)
 (1p+1p)

2. Hitta eventuella asymptoter samt max-, min- och terrasspunkter till funktionen
 \[f(x) = \frac{2x-3}{x-1} \]
 samt skissa grafen.
 (2p)

3. Lös ekvationen
 \[z^3 - 7z^2 + 4z - 28 = 0 \]
 om en lösning är \(z = 2i \).
 (2p)

4. a) Skriv \(\frac{3+4i}{2-2i} \) på formen \(a + bi \).
 (1p)
 b) Lös ekvationen
 \[z^3 = -8i \]
 (2p)

5. Bestäm talet \(a \) så att funktionen
 \[f(x) = \begin{cases}
 x + a, & x < 0 \\
 a, & x = 0 \\
 \ln(1+x) & x > 0
 \end{cases} \]
 blir kontinuerlig i \(x = 0 \).
 (2p)

6. a) Välj en definitionsmängd till funktionen
\[f(x) = \tan 5x \]

så att den blir inverterbar samt ange motsvarande värdenmängd. (2p)

b) Bestäm inversen till \(f \) på den aktuella definitionsmängden. (2p)

7. Derivera

a) \[f(x) = \ln(1 + e^{2x}) + (1 + \sqrt{x}) \cos x, x > 0. \] (1p)

b) \[f(x) = \frac{\sin(1+x^2)}{\sqrt{x} \ln x}, > 0 \] (1p)

8. Beräkna

a) \[\lim_{x \to 0} \frac{3 \sin(2x)}{x} \] (1p)

b) \[\lim_{x \to \infty} \frac{10x^{10} + 5x^5}{2x^2 + e^x} \] (1p)

9. En jakthund jagar ett byte. Efter \(x \) minuter har hunden kraft efter att springa maximalt \(\frac{400}{10+x} \) km/h. Samtidigt ökar hundens motivation när den närmar sig byteet så att den springer \(100(1 - e^{-x}) \)% av sin maxfart. När springer hunden som fortast? Ledning: Du kommer inte att kunna lösa ut \(x \) på något enkelt sätt för att bestämma derivatans nollställe utan måste pröva dig fram på lämpligt sätt. (3p)

10. Lös olikheten

\[(x + |x|)^2 > 4. \] (2p)