<table>
<thead>
<tr>
<th>Kurskod</th>
<th>Provkod</th>
<th>Tentamensdatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>KE027G</td>
<td>T200</td>
<td>2019-01-08</td>
</tr>
<tr>
<td>Kursnamn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kemi GR (B), Kemisk jämvikt och kemiska analysmetoder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provnamn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kemiska analysetekniker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ort</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sundsvall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Termin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ämne</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mittuniversitetet
Institutionen för naturvetenskap
Kursansvarig: Dan Bylund (010-142 89 09)
Mađelen Olofsson (010-142 88 67)

TENTAMEN i Kemi GR(B), Analytisk kemi, 7.5 hp samt Kemi GR(A), Kemisk jämlik och kemiska analysmetoder, 12 hp, moment analytisk kemi

Tid: Tisdagen den 8 januari 2019, 5 timmar

Tillåtna hjälpmedel: Kalkylator, linjal samt bifogad formelsamling

Tentamen omfattar 6 uppgifter om totalt 50 poäng. För godkänt betyg krävs minst 25 poäng (50 %), och samtliga lärandemål uppfyllda. Skriv namn/kod på alla papper som lämnas in. Skriv endast en uppgift på varje inlämnat blad.

Lycka till! / Dan och Madde
1. I figuren nedan ser du en schematisk bild av en spektrofotometer med dubbel stråle.

a) Namnge, alt. beskriv väl, alla numrerade komponenter! 0,5 p för varje rätt svar och -0,5 p för varje fel svar. Lägsta möjliga poäng för uppgiften är noll.

b) Beskriv med formel hur du beräknar transmittansen (T) för ett prov med hjälp av \(P_0 \) och \(P \).

c) Om transmittansen uppmätts till 45 %, vad är provets absorbans?

d) Om du med ovan beskrivna spektrofotometer analyserar ett prov innehållande acetylsalicylsyra löst i 1 mM saltsyra, vad innehåller då ditt blankprov?

e) När du analyserar ditt prov avläser du en absorbans på 0,250. Om du använder dig av kyvletter som är 1 cm breda och om den molara absorptiviteten är 6000 \(M^{-1}cm^{-1} \), vilken koncentration har acetylsalicylsyran i provet?

\((4+1+1+1+2 \ p) \)
2. I figuren nedan ser ni ett kromatogram där två analyter har separerats på en stationärfas bestående av C18 (oktadekyl). En icke retarderad molekyl eluerar efter 1,1 min i samma system. Kolonnen är 12 cm lång och har en innerdiameter på 2,0 mm. Av kolonnens totala volym utgör mobilfasen 65 %. OBS! En större version av kromatogrammet finns i slutet av tentan.

![Diagram](image)

Tid (min)

Counts (Cl106G)

a) Med avseende på stationärfasen, vilken typ av kromatografi tillämpas?

b) Beräkna det volymetriska samt det linjära mobilfasflödet. Bortse från volymer i kapillärer före och efter kolonnen.

c) Beräkna selektivitetsfaktorn (eng. relative retention) för de två topparna. Redovisa beräkningarna och hur du fått fram dina värden ur figuren.

d) Beräkna upplösningen (eng. resolution) för de två topparna. Redovisa beräkningarna och hur du fått fram dina värden ur figuren.

e) Beräkna höjden av en teoretisk botten samt kolonnens effektivitet (antalet teoretiska bottmar) med avseende på den sist eluerande analyten.

\[(1+3+2+3+4\ p)\]
3. Nedan följer fem påståenden som skall besvaras med sant eller falskt. Rätt svar ger 1 poäng, fel svar ger -0.5 poäng och uteblivet svar ger 0 poäng. Lägsta möjliga totalsumma på uppgiften är 0 poäng.

 a) När temperaturgradient tillämpas vid gaskromatografi så höjs kolonntemperaturen succesivt under köringen.

 b) Flamjonisationsdetektor är en vanligt förekommande detektor när gaskromatografi tillämpas.

 c) När open tubular kolonner används i gaskromatografiska tillämpningar så spelar ofta A-termen i van Deemter-ekvationen stor roll.

 d) Grafitugn, flamma och plasma är alla exempel på interface till molekylär spektroskopi.

 e) Glas är ett lämpligt material för kyvletter inom UV-spektroskopi.

(5 p)

 a) För att mäta exempelvis halten cerium i vattnet så kan analysinstrument baserade på induktivt kopplat plasma (ICP) användas. Ungefär vilka temperaturer kan uppnås i ett sådant plasma och vilka fördelar har ICP-tekniken jämfört med motsvarande instrument baserade på flamma?

 b) Alternativt så kan spektroskopisk analys tillgripas efter reaktion med olika slags reagens. Då måste emellertid metalljonerna först anrikas, exempelvis genom jonparsextraktion till ett organiskt lösningsmedel. Vilken grad av uppkoncentrering kan erhållas om D=40 för en kvantitativ extraktion (R>0,99) av detta slag? (Tips: \(V_r = \frac{V_{org}}{V_{org}} \))

(3+2 p)

a) Vid misstänkt flugsvampförgiftning kan ett blodprov tas och analyseras med vätskechromatografi kopplad till masspektrometri (LC-MS) med avseende på förekomst av amanitin. Innan plasmaprovet kan injiceras i LC-MS-systemet så måste det emellertid renas upp och en lämplig metod för detta är fastfasextraktion (SPE). Beskriv principerna för denna provuppsättningsteknik!

b) Amanitin är en modifierad cyklisk oktapeptid som bäst joniseras med elektrospray (ESI). Beskriv denna jonisationsteknik, gärna med stöd av en principskiss!

c) Nedanstående massspektrum för α-amanitin (M=919 g/mol) är hämtad ur Forensic Toxicol. (2010) 28:69-76. Varför ser man, utöver huvudtoppen vid m/z 919, även toppar vid m/z 920 och m/z 921 i detta spektrum?

![Massspektrum för α-amanitin](image)

d) I den LC-MS-metod som beskrivs i ovan nämnd artikel så användes ett MS-instrument med en massanalysebasat på time-of-flight (TOF). Hur fungerar denna analysator?

(2+4+1+2 p)
6. Svavelväte (H₂S) är en giftig gas som bland annat inhiberar komplex IV i andningskedjan. H₂S bildas exempelvis vid nedbrytning av aminosyran cystein och för några år sedan inträffade en allvarlig olycka där två fiskare omkom då de skulle lasta av industrifisk från lastutrymmet på sin båt.

b) En kalibreringskurva för denna IR-sensor gav ekvationen \(A = 0.010 + 0.015c \), där \(A \) är absorbansen och \(c \) koncentrationen SO₂ i ppm. Om ett luftprov ger \(A = 0.12 \) utan fotokemisk behandling och \(A = 0.18 \) efter fotokemisk behandling, vad är då den beräknade H₂S-koncentrationen?

c) För att testa den nya sensorn så analyserades ett luftprov spikat med H₂S ett antal gånger både med IR-metoden och med GC-metoden. Resultaten av dessa analyser ser ni nedan. Antag normalfördelning och undersök om det finns någon anledning att misstänka att de båda metoderna ger olika resultat \((F_{kritisk}=9.28 \text{ och } t_{kritisk}=2.45) \)!

<table>
<thead>
<tr>
<th>Analysmetod</th>
<th>([\text{H}_2\text{S}] / \text{ppm})</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>140</td>
</tr>
<tr>
<td>IR</td>
<td>141</td>
</tr>
</tbody>
</table>

\[(1+2+6 \text{ p})\]
Formelsamling analytisk kemi

Spektroskopisk
\[E = h \nu = \frac{\hbar \nu}{\lambda} \]
\[\eta_i = \frac{c}{v_i} \]
\[n \lambda = d (\sin \theta + \sin \phi) \]
\[A = \log \frac{P_0}{P} = \varepsilon bc \]

Extraktion
\[D = \frac{C_{x,\text{org}}}{C_{x,\text{eq}}} \]
\[E = \frac{n_{\text{org}}}{n_{\text{tot}}} = \frac{1}{1 + V_r/D} \]

Kromatografisk
\[k = \frac{t_r - t_m}{t_m} = \frac{V_r - V_m}{V_m} \]
\[k = K \cdot \frac{V_r}{V_m} = \frac{C_i V_s}{C_m V_m} \]
\[\alpha = \frac{k_2}{k_1} \]
\[\alpha = \frac{K_2}{K_1} \]
\[N = 16 \left(\frac{t_r}{w_b} \right)^2 = 5.54 \left(\frac{t_r}{w_{1/2}} \right)^2 = \frac{t^2_r}{\sigma^2} \]
\[R_s = \frac{2 \Delta t_r}{w_{k1} + w_{k2}} \approx \frac{1.18 \Delta t_r}{w_{1/2(1)} + w_{1/2(2)}} \]
\[R_s = \frac{\sqrt{N} \cdot (\alpha - 1)}{4} \cdot \frac{k_2}{\alpha \cdot k_2 + 1} \]
\[H = \frac{L}{N} \]
\[H = A + B / u_x + C u_x \]

Statistik
\[\bar{x} = \frac{\sum x_i}{n} \]
\[s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}} \]
\[\mu = \bar{x} \pm t \frac{s}{\sqrt{n}} \]
\[s_{pool} = \sqrt{\frac{(n_A-1)s_A^2 + (n_B-1)s_B^2}{n_A + n_B - 2}} \]
\[F_{\text{obs}} = \frac{s_A^2}{s_B^2} \text{ där } s_A^2 \geq s_B^2 \]
\[t_{\text{obs}} = \frac{|\bar{x}_A - \bar{x}_B|}{\sqrt{s_A^2 + s_B^2} / n_A + n_B} \]
\[t_{\text{obs}} = \frac{1 + 1}{s_{pool} \sqrt{n_A n_B}} \]
Figur till uppgift 2. Lämnas in tillsammans med färdig tenta.