<table>
<thead>
<tr>
<th>Kurskod</th>
<th>Provkod</th>
<th>Tentamensdatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA139G</td>
<td>T2000</td>
<td>2019-01-18</td>
</tr>
</tbody>
</table>

- **Kursnamn**: Matematik GR (A), Matematisk statistik och modellering
- **Provnamn**: Skriftlig tentamen, Matematisk statistik
- **Ort**: Sundsvall
- **Termin**
- **Ämne**
Tentamen i matematik
Matematisk statistik och modellering (MA139G)
Del 2: Matematisk statistik

Mittuniversitetet
MOD
18 januari 2019

Lärare: Anders Holmbom, Jens Persson, Cornelia Schiebold
Skrivtid: 3 timmar
Hjälpmaterial: Matematisk formelsamling (Uppslaga 5) samt godkänd, ej symbolhanterande miniräknare.

Till alla uppgifter skall fullständiga lösningar lämnas. Resonemang, ekvationslösningar och uträkningsfår inte vara så knapphändiga att de blir svåra att följa. En uppgift per blad, skriv endast på en sida.

 4 3 3 6 3 4 3 6 4 4 2 2 4
 3 3 3 4 3 5 5 3 4 5 5

 a) Gör en frekvensstabell med relativa och kumulative frekvenser. Rita även stolpdiagram samt trappstegskurva.
 (2 p)

 b) Bestäm typvärde, variationsbredd, median, medelvärde och standardavvikelse.
 (2 p)

2. Vid tillverkning av en viss typ av byggelement kan två slags fel A och B förekomma hos de tillverkade enheterna. Man vet att \(P(A) = 0.1, P(B) = 0.2 \) och \(P(A \cap B) = 0.05 \).

 a) Beräknna sannolikheten för att en viss enhet har något av felerna.
 (1,5 p)

 b) Uppstår felken A och B oberoende av varandra?
 (1,5 p)

 c) Vad är sannolikheten för att en enhet har fel B, givet att den inte har fel A?
 (2,5 p)

3. Den stokastiska variabeln \(\xi \) har frekvensfunktionen

 \[
 f(x) = \begin{cases}
 6x - 6x^2, & 0 < x < 1, \\
 0, & \text{för övrigt.}
 \end{cases}
 \]

 a) Bestäm fördelningsfunktionen för \(\xi \).
 (1,5 p)

 b) Beräknna sannolikheten \(P(\frac{1}{4} < \xi \leq \frac{3}{4}) \).
 (1,5 p)

 c) Beräknna väntevärdet för \(\xi \).
 (1,5 p)
4. a) Fem mätningar har gjorts för att bestämma en fysikalisk konstant μ.

 7.16 7.13 7.03 7.29 7.09

Mätningarna kan anses vara oberoende observationer från en normalfördelning med väntevärde μ och standardavvikelse $\sigma = 0.1$. Bestäm ett 95 % konfidensintervall för μ.

b) Antag att mätningarna är observationer av $\xi \in N(7.08, 0.1)$. Beräkna sannolikheten för att ett mätvärde är åtminstone 7.13, dvs. $P(\xi \geq 7.13)$.

5. a) En skytt träffar en viss sorts måltavla med 85 % sannolikhet. Hur sannolikt är det att åtminstone 9 av 10 skott träffar en sådan måltavla?

b) Ett taxibolag prissätter taxiresor på följande sätt: varje resa har en startavgift på 57 kr och sedan tillkommer 14 kr per km samt 9 kr per minut under resan. Enligt en undersökning är bolagets innerstadsresor ξ km långa och varar η minuter, där $\xi \in N(3,1)$ och $\eta \in N(8,2)$. Beräkna sannolikheten för att en sådan resa kostar mellan 150 kr och 200 kr.

Lycka till!