Försättsblad Prov Original

<table>
<thead>
<tr>
<th>Kurskod</th>
<th>Provkod</th>
<th>Tentamensdatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT046G</td>
<td>T101</td>
<td>2019-01-11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kursnamn</th>
<th>Provnamn</th>
<th>Ort</th>
<th>Termin</th>
<th>Åmne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datateknik GR (B), Datastrukturer och algoritmer</td>
<td>Skriftlig tentamen</td>
<td>Sundsvall</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Instructions

Skriv tydligt. Om svaret är oläsligt får du 0 poäng - även om svaret är korrekt. Frågorna är inte ordnade efter svårighetsgrad.

Tid 5 timmar.

Hjälpmedel Inga.

Max poäng 50

Antal frågor 9

Preliminära gränser

E ≥ 40%, D ≥ 50%, C ≥ 60%, B ≥ 75%, A ≥ 90%.

Questions

(4p) 1. Ordna följande uttryck efter deras tillväxttakt, långsammast växande först. Ange om uttrycket är ett polynom eller inte
• N^2
• $N + N$
• $N \log 2^N$
• $\sqrt{N^2}$
• $N!$

(4p) 2. (a) Beskriv någon algoritm som är typiskt $O(\log N)$.
(b) Beskriv någon algoritm som är typiskt $O(N)$.

(3p) 3. Vi har visat att för sorteringsalgoritmer baserade på jämförelser är det optimalt att nå komplexiteten $O(N \log N)$. Beskriv i stora drag hur ett sådant bevis ser ut.

(6p) 4. Förklara utförligt hur man uppnår "amortized $O(N)$" för individuell insättning av N element i en arrayliknande struktur.

(2p) (a) Vad innebär det att en graf är riktad (digraf)?
(2p) (b) Hur implementerar man en riktad graf i en adjacency matrix.

(6p) 6. Vilka blir delresultaten av att tillämpa heapsort på

meltdown

Förklara delstegen.

(6p) 7. Beskriv en metod för att finna det k:te minsta elementet i en array.

Ex:

```
A = { 7, 4, 3, 9, 8, 5, 1}
e = find_k_min(A, 4) // nollbaserat index.
```

Ger resultatet $e = 7$.

Full poäng ges endast om du beskriver en $O(N)$ metod.

8. Du har följande mängd/indata $A = 23, 13, 28, 35, 23, 14, 15, 18, 27, 22$

Indatat ska sättas in i ett 2-3-4 träd.

(4p) (a) Beskriv insättning av indatat. Var inte mer kortfattad än att principerna framgår tydligt.

(3p) (b) Beskriv borttagning av några element så att trädet minskar i höjd. Var inte mer kortfattad än att principerna framgår.

(4p) (c) Vi har behandlat 2-3-4 träd i synnhetet på grund av deras relation till rödsvarta träd.
Vad är relationen mellan 2-3-4 träd och rödsvarta träd som vi utnyttjat?

(6p) 9. Implementera en komplett klass i c++ kod som representerar en prioritetsskå. Köns ska innehålla operationerna top():e, pop():, och push(): med rimlig semantik. Beskriv komplexiteterna för samtliga operationer.

Du får använda alla hjälpmedel från standardbiblioteket förutom std::priority_queue.
Lycka till,
Martin.