<table>
<thead>
<tr>
<th>Kurskod</th>
<th>Provkod</th>
<th>Tentamensdatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA134G</td>
<td>Ö100</td>
<td>2019-04-05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kursnamn</th>
<th>Provnamn</th>
<th>Ort</th>
<th>Ämne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matematik GR (A), Envariabelanalys 2</td>
<td>Tentamen</td>
<td>Östersund</td>
<td></td>
</tr>
</tbody>
</table>
Tentamen i Envariabelanalys 2, 7,5 hp, 2019-04-05

Kurskod: MA134G
Skrivetid: 5 timmar
Hjälpmedel: Grafritande räknare som ej är symbolhanterande samt Matematisk formelsamling, upplaga 5.
Lärare: Anders Holmbom

1. a) Derivera \(f(x) = \sqrt{4e^x - x} + x^5 \ln x, x > 0. \)
 b) Ekvationen \(x^3 y^7 + 3xy = 4 \) definierar en kurva i planet. Bestäm dess lutning i punkten \((1,1)\).
 c) Bestäm inversderivatan \((f^{-1})'(2)\) för funktionen \(f(x) = e^{3x} + 1. \)

2. a) Lös differentialekvationen \(xy' + y = x\cos x, x > 0. \)
 b) Lös differentialekvationen \(y'' = e^{-y}\cos x, y(0) = 0, 0 \leq x \leq \pi. \)
 c) Lös differentialekvationen \(y'' - 16y = 4e^{4x}. \)

3. a) Bestäm Taylorpolynomet av ordning 3 kring \(x = 0 \) för \(f(x) = \sin(2x). \)
 b) Använd Taylorpolynomet i a) för att approximera \(\sin(1). \)

4. a) Beräkna integralen \(\int_0^1 x^2 e^x \, dx \)
 b) Beräkna integralen \(\int_0^1 \sin(\pi e^x + \pi) e^{x+\pi} \, dx \)
 c) Beräkna, om möjligt, den generaliserade integralen \(\int_0^1 x^3 \ln x \, dx \).

5. a) Beräkna båglängden av parameterkurvan
 \[\begin{align*}
 x(t) &= e^t, \quad 0 \leq t \leq 1 \\
 y(t) &= \frac{2}{3} e^{3t}
 \end{align*} \]
 b) Beräkna om möjligt volymen av den kropp som uppstår då området mellan kurvorna \(y = e^{-x} \) och \(y = e^{-2x} \) roterar kring positiva \(x \)-axeln.

\textbf{Vänd!}
c) Beräkna volymen av den kropp som uppstår då området som begränsas av kurvan \(y = e^{-x} \) och linjerna \(x = 1 \) och \(x = 2 \) roterar kring y-axeln. (1p)

6. a) Avgör huruvida serien \(\sum_{k=1}^{\infty} \frac{1+(sink)^2}{k} \) konvergerar eller divergerar. (1p)
 b) Avgör huruvida serien \(\sum_{k=1}^{\infty} ke^{-k} \) konvergerar eller divergerar. (1p)

7. a) Skissa kurvorna \(r = \theta^2 \) och \(r = \theta^3 \) i första kvadranten. (1p)
 b) Beräkna arean av det område som ligger mellan dessa kurvor i första kvadranten. (2p)

8. En hungrig ko släpps ut på bete. Vi börjar iakta kon när den betat av en kvadratmeter. Allteftersom den blir mättare minskar aptiten och när den betat av y kvadratmeter har takten sjunkit till \(y^{-2} \) kvadratmeter per timme. Efter hur lång tid har kon betat av två kvadratmeter? (2p)

Uppgift A

Lycka till!