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Abstract 
 In this thesis, a method and a tool to enable efficient memory synthesis for real-time video 
processing systems on field programmable logic array are presented. In real-time video processing 
system (RTVPS), a set of operations are repetitively performed on every image frame in a video stream. 
These operations are usually computationally intensive and, depending on the video resolution, can 
also be very data transfer dominated. These operations, which often require data from several 
consecutive frames and many rows of data within each frame, must be performed accurately and under 
real-time constraints as the results greatly affect the accuracy of application. Application domains of 
these systems include machine vision, object recognition and tracking, visual enhancement and 
surveillance. 
 Developments in field programmable gate array (FPGAs) have been the motivation for choosing 
them as the platform for implementing RTVPS. Essential logic resources required in RTVPS operation 
are currently available optimized and embedded in modern FPGAs. One such resource is the embedded 
memory used for data buffering during real-time video processing. Each data buffer corresponds to a 
row of pixels in a video frame, which is allocated using a synthesis tool that performs the mapping of 
buffers to embedded memories. This approach has been investigated and proven to be inefficient. An 
efficient alternative employing resource sharing and allocation width pipelining will be discussed in 
this thesis. 
 A method for optimised use of these embedded memories and, additionally, a tool supporting 
automatic generation of hardware descriptions language (HDL) modules for synthesis of the memories 
according to the developed method are the main focus of this thesis. This method consists of the 
memory architecture, allocation and addressing. The central objective of this method is optimised use of 
embedded memories in the process of buffering data on-chip for an RVTPS operation. The developed 
software tool is an environment for generating HDL codes implementing the memory sub-components.  
 The tool integrates with the Interface and Memory Modelling (IMEM) tools in such a way that 
the IMEM’s output - the memory requirements of a RTVPS - is imported and processed in order to 
generate the HDL codes. IMEM is based on the philosophy that the memory requirements of an RTVPS 
can be modelled and synthesized separately from the development of the core RTVPS algorithm thus 
freeing the designer to focus on the development of the algorithm while relying on IMEM for the 
implementation of memory sub-components. 
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[A] Memory Requirements 
      Video Width:    640 
      Pixel Width:      8 
      # of Line buffers:   2 
 
[B] #include "systemc.h" 
    SC_MODULE( VIP_Algorithm ) { 
    public: 
     sc_in< bool > input_signals; 
     sc_out< sc_uint<8> output; 
     void Filter_Core();     
     SC_CTOR(VIP_Algorithm ) { 
       SC_THREAD(Filter_Core ); 
       sensitive_pos << clk; 
     } 
    }; 
 
[C] Filter_Core() { 
      // A normal VIP algorithm 
      // function written in  
      // C/C++/SystemC. 
      int<16> var; // variables 
      // Manipulate inputs 
      output = input_signals * 2; 
   }  
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K is number of available memory modules 

I is number of memory objects to be allocated 

Di, k 

Mk is defined by LMk, WMk and SMk. SMk = LMk * WMk 

Ri is defined by LRi, WRi and SRi. SRi = LRi * WRi 
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