
Memory Synthesis for FPGA Implementation of Real-Time Video
Processing Systems

Najeem Lawal

Electronics Design Division,
Information Technology and Media
Mid Sweden University,
SE-851 70 Sundsvall,
Sweden

Sundsvall 2009
ISBN 978-91-86073-26-8

Akademisk avhandling som med tillstånd av Mittuniversitetet i Sundsvall framläggs till offentlig granskning för
avläggande av teknologie doktors examen i elektronik onsdagen den 07 Jan 2009, klockan 13:15 i sal M102,
Mittuniversitetet Sundsvall. Seminariet kommer att hållas på engelska.

Abstract
 In this thesis, a method and a tool to enable efficient memory synthesis for real-time video
processing systems on field programmable logic array are presented. In real-time video processing
system (RTVPS), a set of operations are repetitively performed on every image frame in a video stream.
These operations are usually computationally intensive and, depending on the video resolution, can
also be very data transfer dominated. These operations, which often require data from several
consecutive frames and many rows of data within each frame, must be performed accurately and under
real-time constraints as the results greatly affect the accuracy of application. Application domains of
these systems include machine vision, object recognition and tracking, visual enhancement and
surveillance.
 Developments in field programmable gate array (FPGAs) have been the motivation for choosing
them as the platform for implementing RTVPS. Essential logic resources required in RTVPS operation
are currently available optimized and embedded in modern FPGAs. One such resource is the embedded
memory used for data buffering during real-time video processing. Each data buffer corresponds to a
row of pixels in a video frame, which is allocated using a synthesis tool that performs the mapping of
buffers to embedded memories. This approach has been investigated and proven to be inefficient. An
efficient alternative employing resource sharing and allocation width pipelining will be discussed in
this thesis.
 A method for optimised use of these embedded memories and, additionally, a tool supporting
automatic generation of hardware descriptions language (HDL) modules for synthesis of the memories
according to the developed method are the main focus of this thesis. This method consists of the
memory architecture, allocation and addressing. The central objective of this method is optimised use of
embedded memories in the process of buffering data on-chip for an RVTPS operation. The developed
software tool is an environment for generating HDL codes implementing the memory sub-components.
 The tool integrates with the Interface and Memory Modelling (IMEM) tools in such a way that
the IMEM’s output - the memory requirements of a RTVPS - is imported and processed in order to
generate the HDL codes. IMEM is based on the philosophy that the memory requirements of an RTVPS
can be modelled and synthesized separately from the development of the core RTVPS algorithm thus
freeing the designer to focus on the development of the algorithm while relying on IMEM for the
implementation of memory sub-components.

Memory Synthesis for FPGA Implementation of Real-Time Video
Processing Systems

Najeem Lawal

System Synthesis Workflow

Interface and
Memory Model

Simulation Input
Stimuli

Functional Simulation
Data Output

1

2

3

4

5

6

Memory Hierarchy
Optimization

IMEM
Conceptual Modelling

IMEM Projector High-level Synthesis
Memory

Allocation
Address

Generation

Interface generation

VHDL code for
FPGA

C++ High level
synthesis (Agility)

Functional mapping
of algorithm

VHDL code for
FPGA

FPGA logic compiler

FPGA based
execution platform

Memory
Storage

Estimation

Memory Implementation

Linebuffers

Window
ctrl

Pixel
switch

SLWC

...

VIP Algorithm

Sync.

a11 a12 a13
a21 a22 a23
a31 a32 a33

In
data

Neighbourhood
data

Neighbourhood
output

Out
data

a)

b)

Memory Requirement

Line buffer Line buffer

d d d d d d

p11 p12 p13

p21 p23

p31

p22

p32 p33

p33 p32 p31 p23 p22 p21 p13 p12 p11

a)

b)
dpixel

dpixel

System Integration and Verification

SystemC
Simulator

VHDL
Simulator

Impulse

Response

Behavioral
Specification

Semi-automatic
Synthesis

 Automatic Synthesis

C/C++ Filter function [C]

Mem
Req.

[A]

SystemC
Compilation

VHDL
Compilation

Memory
Synthesis

FPGA

SystemC
Module [B]

VHDL
Module

(Fig 26b)

Memory Management
VHDL Module

(Fig 26a)

Netlist

IMEM

[A] Memory Requirements
 Video Width: 640
 Pixel Width: 8
 # of Line buffers: 2

[B] #include "systemc.h"
 SC_MODULE(VIP_Algorithm) {
 public:
 sc_in< bool > input_signals;
 sc_out< sc_uint<8> output;
 void Filter_Core();
 SC_CTOR(VIP_Algorithm) {
 SC_THREAD(Filter_Core);
 sensitive_pos << clk;
 }
 };

[C] Filter_Core() {
 // A normal VIP algorithm
 // function written in
 // C/C++/SystemC.
 int<16> var; // variables
 // Manipulate inputs
 output = input_signals * 2;
 }

Memory Allocation

M2

R2

Mk

Ri

MK

RI

M1

R1

…

…

…

…

K is number of available memory modules

I is number of memory objects to be allocated

Di, k

Mk is defined by LMk, WMk and SMk. SMk = LMk * WMk

Ri is defined by LRi, WRi and SRi. SRi = LRi * WRi

Memory Architecture

 128
by 32
op = 1
seg=1
par=2

L by 12

L by 12

L by 12

L by 12
L by 48

Ri

op_id = 1

512 by 32

op = 1 seg = 1
par = 1

640 by 16
op = 1 seg = 2 par = 1

 512 by 32

op = 1 seg = 1
par = 1

Block RAM 1 Block RAM 2 Port B Port A

640 by 16
op = 1 seg = 2 par = 1

128
by 32
op = 1
seg = 1
par = 2

Unused
Memory
2kBit

L = 640

Port A

