Thesis for the degree of Doctoral, Sundsvall 2015

SHIFT WORK AND CARDIOVASCULAR DISEASE

Jonas Hermansson

Supervisors:
Katja Gillander Gådin, Anders Knutsson and Berndt Karlsson

Department of Health Sciences
Mid Sweden University, SE-851 70 Sundsvall, Sweden

ISSN 1652-893X,
Mid Sweden University Doctoral Thesis 231
ISBN 978-91-88025-41-8
Akademisk avhandling som med tillstånd av Mittuniversitetet i Sundsvall framläggs till offentlig granskning för avläggande av Doktorsexamen i hälsovetenskap, fredagen den 27 november, 2015, klockan 13:15 i Lubbesalen, Mittuniversitetet Sundsvall. Seminariet kommer att hållas på svenska.

Academic thesis which by permission of Mid Sweden University in Sundsvall is presented for public examination on account of doctoral examination Friday 27: th of November, at 13:15 in Lubbesalen, Mid Sweden University Sundsvall, Sweden. The seminar will be held in Swedish.

SHIFT WORK AND CARDIOVASCULAR DISEASE
Jonas Hermansson

© Jonas Hermansson, 2015

Department of Health Sciences, Faculty of Human Sciences
Mid Sweden University, SE-851 70 Sundsvall
Sweden

Telephone: +46 (0) 10 142 80 00

Printed by Kopieringen Mid Sweden University, Sundsvall, Sweden, 2015
To my relief.
ABSTRACT
Shift work is often defined as working time outside daytime hours (06:00 to 18:00). In recent years, shift work has been associated with an increased risk of cardiovascular disease (CVD), type II diabetes, and the metabolic syndrome. While some studies support the associations, others do not. Therefore, more research is needed. The aim of this thesis was to further study the association between shift work and CVD. This was addressed by performing four studies, one analysed if shift workers had an increased risk of ischemic stroke, the second study analysed whether shift workers had an increased risk of short-term mortality (case fatality) after a myocardial infarction (MI). The third study analysed if shift work interacts with other risk factors for MI and the fourth study analysed if parental history of CVD interacted with shift work on the risk of MI. The studies were performed using logistic regression analyses and additive interaction analyses in two different case-control databases.

Shift workers did not have an increased risk of ischemic stroke. Male shift workers had an increased risk of death within 28 days after a MI. Shift work interacts with some CVD risk factors and interacts with paternal history of CVD and the risk of MI for males. The findings from this thesis provide new evidence showing that shift work is in different ways associated with an increased risk of MI and related mortality, but not with ischemic stroke. However, more research is needed to clarify and characterise these results.

Keywords: Shift work, epidemiology, cardiovascular disease, stroke, case fatality
SAMMANDRAG

Nyckelord: Skiftarbete, epidemiologi, hjärt-kärlsjukdomar, stroke, mortalitet
LIST OF PAPERS

This thesis is mainly based on the following papers, herein referred to by their Roman numerals:

Paper I Ischemic stroke and shift work.
Hermansson, J., Gillander Gådin, K., Karlsson, B., Lindahl, B., Stegmayr, B., & Knutsson, A.

Paper II Case fatality of myocardial infarction among shift workers.
Hermansson, J., Gillander Gådin, K., Karlsson, B., Reuterwall C., Hallqvist J., & Knutsson, A.

Paper III Interaction between shift work and coronary risk factors on risk of myocardial infarction.
In manuscript.

Paper IV Interaction between parental history of myocardial infarction or sudden cardiac death and shift work on the incidence of myocardial infarction among males.
Hermansson, J., Karlsson, B., Knutsson, A., & Gillander Gådin, K.
In manuscript.

Paper I is published with the kind permission of the editor in chief of Scandinavian Journal of Work Environment & Health. Paper II is published with the kind permission of Springer Science and Business Media.
TABLE OF CONTENT

ABBREVIATIONS .. 3
INTRODUCTION ... 4
SHIFT WORK ... 4
SHIFT WORK AND HEALTH DISORDERS ... 5
 Shift work and the metabolic syndrome and diabetes type II .. 6
CARDIOVASCULAR DISEASE ... 7
 Ischemic heart disease and stroke .. 7
 Risk factors ... 9
 Modifiable risk factors .. 10
 Non-modifiable risk factors ... 11
 Other types cardiovascular disease ... 14
 Heart failure .. 14
 Rheumatic heart disease ... 15
 Artery disease .. 15
SHIFT WORK AND MORBIDITY OF CORONARY HEART DISEASE 15
SHIFT WORK AND CARDIOVASCULAR DISEASE MORTALITY 18
SHIFT WORK AND RISK FACTOR INTERACTION .. 19
SHIFT WORK AND PARENTAL HISTORY OF CARDIOMETABOLIC DISEASE 20
SHIFT WORK AND ISCHEMIC STROKE ... 21
POTENTIAL MECHANISMS AFFECTING CARDIOVASCULAR DISEASE AND SHIFT WORK .. 22
 Circadian disruption .. 22
 Metabolic disturbance .. 22
 Life style factors and stress .. 23
 Cardiovascular effects .. 23
SUMMARY ... 24
AIM AND OBJECTIVES ... 25
METHODS .. 26
STUDY POPULATIONS ... 26
 MONICA/VIP (paper I) ... 26
 SHEEP/VHEEP (paper II, III, and IV) ... 27
 Exposure information ... 28
STATISTICAL METHODS .. 31
 Interaction on an additive scale .. 31
ETHICAL CONSIDERATIONS ... 33
RESULTS ... 34
SHIFT WORK AND ISCHEMIC STROKE (PAPER I) ... 34
SHIFT WORK AND CASE FATALITY OF MYOCARDIAL INFARCTION (PAPER II) 35

1
ABBREVIATIONS

AF atrial fibrillation
AP attributable proportion
AV-node atrioventricular node
BMI body mass index
CI confidence interval
CHD coronary heart disease
CRP C-reactive protein
CT computed tomography
CVD cardiovascular disease
HDL high density lipoprotein
HR hazard ratio
HRV heart rate variability
ICD international classification of diseases
IHD ischemic heart disease
ILO international labour office
LDL low-density lipoprotein
mmHg millimetre mercury
mmol/L millimole per litre
MI myocardial infarction
OR odds ratio
PAD peripheral artery disease
PAR population attributable risk
RERI relative excess risk due to interaction
RR relative risk
SCD sudden cardiac death
SI synergy index
QT time between start of Q wave to end of T wave in the electrical cycle of the heart
WHR waist hip ratio
INTRODUCTION

The working life of today is characterised by a continuous development towards the so-called 24-h society where more and more stores, industries, and service functions are increasing their accessibility. In this process, more and more people are starting to work outside what usually is defined as day work. However, this is not without health consequences (Rajaratnam and Arendt 2001).

A number of studies have shown that shift work is associated with coronary heart disease (CHD) (Vyas et al. 2012), but the evidence on a causal relationship is limited. CHD and ischemic stroke have many common risk factors (Anand et al. 2008; O'Donnell et al. 2010), risk factors that to some extent have been associated with shift work (Bøggild and Knutsson 1999). Because shift work is increasing in prevalence and cardiovascular disease (CVD) is an established public health issue, this is a field in need of further focus. In this thesis, the aim was to explore further the association between shift work and CVD with a focus on ischemic stroke, case fatality among shift workers with myocardial infarction (MI), interaction between CVD risk factors, and parental history of CVD and shift work and the association with MI.

Shift work

Shift work is a term used to define a work schedule being the opposite of daytime work. The International Labour Office (ILO), defines shift work as a “method of organisation of working time in which workers succeed one another at the workplace so that the establishment can operate longer than the hours of work of individual workers” (ILO 2004). This results in different type of work schedules being characterised as shift work such as non-standard, non-regularly occurring working hours, and night work.
An estimated 20% of the European working population are involved in shift work, working time outside day work hours of 06:00 to 18:00 (Parent-Thirion et al. 2007). Shift work is more prevalent in industrial production, hotels, restaurants, transport, and health care (Parent-Thirion et al. 2007; Parent-Thirion et al. 2011). The prevalence of shift work in Sweden is likely to be above 20%, depending on variations in the definition of shift work (Kecklund et al. 2010).

Shift work and health disorders

Besides being associated with a number of severe chronic diseases, shift work is also associated with a number of health disorders; like gastrointestinal malfunction, sleep disturbance, and fatigue. Such symptoms often start soon after starting to work shift work in susceptible individuals (Knutsson and Bøggild 2010). Common symptoms of gastrointestinal malfunction among shift workers are pain or altered bowel movements manifested as either constipation or diarrhoea. Shift work is also associated with peptic ulcer. Shift work is likely to be associated with adverse pregnancy outcomes such as miscarriage, low birth weight, and preterm birth (Knutsson 2003).

Shift work is associated with adverse effects on sleep, performance, and risk of accidents (Åkerstedt and Wright 2009) and cognition impairments (Marquie et al. 2015). Around two thirds of shift workers are affected by disturbed sleep (Åkerstedt 1988) making it one of the most frequently reported health disorder among shift workers (Åkerstedt and Wright 2009).

Shift work has also been associated with an increased risk of foremost breast cancer. There are moderate support for an association between long-term night work (around 20 years) and an increased risk of developing breast cancer. The data

1 The sixth European Working Conditions Survey is being performed during 2015, with results expected in the end of 2015.
on the association with cancers at other sites in the body and total cancer incidence with shift work were not conclusive (X. S. Wang et al. 2011).

Shift work and the metabolic syndrome and diabetes type II

Shift work is associated with the development of different metabolic disorders, lifestyle factors, and different forms of stress (Frost et al. 2009; Green et al. 2008).

Metabolic syndrome is a cluster of risk factors; central obesity, high blood pressure, elevated triglycerides, lowered high density lipoprotein (HDL) cholesterol and elevated fasting glucose, often seen simultaneously (Alberti et al. 2009). Most of the studies support an association between shift work and the metabolic syndrome (De Bacquer et al. 2009; Karlsson et al. 2001; Lin et al. 2009b, 2009a; Pietroiusti et al. 2010; Sookoian et al. 2007). However, one study found no increased association between night shift work and the association with the metabolic syndrome (Violanti et al. 2009). A review from 2011 covering the subject concluded that the evidence for an association between shift work and the metabolic syndrome was moderate (X. S. Wang et al. 2011). A meta-analysis from 2014 concluded that night shift work was associated with the metabolic syndrome (F. Wang et al. 2014).

Shift work is associated with an increased incidence of diabetes type II; however, evidence from individual studies is limited (Kawakami et al. 1999; Kroenke et al. 2007; Nagaya et al. 2002). In 2005, Karlsson and co-workers reported that the number of years of shift work was associated with increased mortality with diabetes type II as an underlying cause, although none of the reported results were significant (Karlsson et al. 2005). The evidence for an association between shift work and diabetes type II was reported as limited in a review (X. S. Wang et al. 2011). A review specifically focused on shift work and diabetes upgraded the association to moderate (Knutsson and Kempe 2014), a meta-analysis from 2015 reported that shift work was associated with an increased risk of diabetes type II (Gan et al. 2015).
Cardiovascular disease

CVD is a group of diseases that involves diseases of the heart, vascular diseases of the brain, and diseases of the blood vessels. It is a major cause of death, illness, and productivity loss worldwide. CVD consists of several sub-categories depending on location in the body and pathogenesis, often divided into CVD due to atherosclerosis or other causes. CVD related to atherosclerosis are ischemic heart disease (IHD), CHD, and some types of cerebrovascular disease. CVD also consists of diseases in major blood vessels, high blood pressure, peripheral artery diseases (PAD) arrhythmias, and rheumatic heart disease.

Ischemic heart disease and stroke

Atherosclerosis is a complex, often time-consuming, process caused by an accumulation of fatty materials, cholesterol, and other particles in the blood vessel walls. These accumulations lead to narrowing and irregularities of the inner side of the blood vessels, that later could result in restrictions in blood flow. These accumulations are prone to rupture, leading to possible formations of blood clots. If a blood clot is developed and lodged in a coronary artery, it can lead to a MI, or if lodged in the brain, an ischemic stroke (Mendis et al. 2011).

IHD, synonymous to CHD, is a sub-category of CVD; it refers to disturbance of cardiac function due to a relative lack of oxygen in the heart. Most often, this is caused by atherosclerosis leading to plaque formation and/or rupture leading to a decrease in- or no blood flow in the coronary arteries. Ischemic stroke is one of the major types of conditions summarised under the umbrella term stroke, the other being haemorrhagic stroke and subaracnoidal haemorrhage. Ischemic stroke is characterised by a loss of blood flow due to an occlusion, in an artery to/or in the brain (WHO 2011).
In the Nordic countries, national hospital discharge registers can be used to gather data about the incidence of hospitalisation due to IHD, creating unique opportunities in presenting updated statistics (Madsen et al. 2007). The age-adjusted incidence rate of MI in Sweden during 2013 was 482 cases per 100 000 men and 313 cases per 100 000 women, age 20 and above. This corresponds to just under 28 000 patients (Socialstyrelsen 2014).

The incidence of ischemic stroke in Sweden for men is around 650 cases per 100 000 men and the corresponding figures for women being 400 cases per 100 000 women (Pessah-Rasmussen et al. 2003). Recent reports have indicated that stroke incidence is declining in Sweden (Riksstroke 2015). In 2010 in Sweden, the total number of incident cases of ischemic stroke were 20 399, with an incidence rate of 220 cases of ischemic stroke per 100 000 men and 206 per 100 000 women (Socialstyrelsen, 2011a).

Mortality, case fatality and sudden cardiac death
CVD related mortality is decreasing in most European countries, but it is still a major cause of death, resulting annually in approximately 1.9 million deaths in the European union, with 1.8 million of those deaths related to CHD (Nichols et al. 2012). The mortality of IHD in Sweden has been declining for some time, during 2014, there were 143 deaths per 100 000 males and 115 deaths per 100 000 women. The same trend has been observed for ischemic stroke as well, the mortality in Sweden in 2015 were 12 deaths per 100 000 males and 18 deaths per 100 000 women (Socialstyrelsen 2015a).

Case fatality can act as an indication of disease severity. A common definition of case fatality is the proportion of cases which are fatal within 28 days after the event (Messner and Lundberg 2004). In general, men have a higher case fatality of MI
than women (MacIntyre et al. 2001). There has been a trend towards declining case fatality after MI in Sweden; between the years of 2011 to 2013, only 12.6 % of cases with MI treated in hospital died within 28 days (Socialstyrelsen 2015b).

Sudden cardiac death (SCD) is defined as unexpected and non-traumatic death occurring within one hour of onset of new or worsening symptoms. SCD is often caused by arrhythmias² in the heart (Zipes et al. 2006).

Risk factors
Prevention of CVD is based mostly on the identification of individuals at risk, most often by assessing the prevalence of associated risk factors. Numerous risk factors have been implicated in the mechanisms leading up to atherosclerosis related CVD. Traditional risk factors such as age, gender, high blood pressure, dyslipidaemia, smoking, and diabetes form the base of most cardiovascular risk prediction models used for identification of individuals at risk of CVD.

The INTERHEART³ investigators reported that nine modifiable risk factors⁴ associated with incident MI explain more than 90 % of the population attributable risk (PAR) of MI among women and men from all regions of the world (Yusuf et al. 2004). In terms of attributable deaths, the leading CVD risk factor is high blood pressure (to which 13 % of global deaths is attributed), followed by tobacco use (9 %), raised blood glucose (6 %), physical inactivity (6 %) and, overweight and obesity (5 %) (Mendis et al. 2011). Results from INTERSTROKE⁵ show that hypertension is the most important risk factor for ischemic stroke. The same study

² Explained in detail later in the text.
³ A global case-control study of risk factors for MI.
⁴ Current or former tobacco smoking, prevalence of diabetes or hypertension, abdominal obesity, psychosocial stressors, insufficient intake of fruits and vegetables, no alcohol intake, physical inactivity, and elevated blood lipids.
⁵ A global case-control study of risk factors for stroke.
also reported associations between all of the risk factors used in INTERHEART with ischemic stroke with a similar PAR value (O’Donnell et al. 2010).

Predicting risk based on risk factors and risk markers

When referring to something as a risk factor, it is implied that it plays a role in the development of CVD. This is the case for most established CVD risk factors. On the other hand, a risk marker is not assumed to play a direct role in the disease progression, it should be considered as a surrogate for a biological process, or serve as an indicator of subclinical disease. Generally, a risk marker is a poor target for therapy (T. J. Wang 2008) compared to modifiable risk factors.

A risk marker is mainly useful if it improves the ability to predict risk (Pepe et al. 2004; Ware 2006). While predicting risk of CVD is difficult, risk equations like the Framingham risk score has a high capacity of predicting further CVD events (Wilson et al. 1998).

Modifiable risk factors

Risk factors for CVD can be divided into modifiable and non-modifiable risk factors. The majority of CVD is caused by risk factors that can be controlled, treated, or modified. For example, high blood pressure, tobacco use, diabetes, physical inactivity, unhealthy diet, elevated cholesterol, and other blood lipids, overweight, and obesity (Anand et al. 2008).

Socioeconomic status (Sahar and Sassone-Corsi 2009; Sephton and Spiegel 2003), is an established risk factor for IHD and ischemic stroke (Peltonen et al. 2000). It is debatable whether socioeconomic status is a modifiable or a non-modifiable risk factor.
Non-modifiable risk factors
In addition to the modifiable risk factors, there are risk factors that cannot be altered or treated in the same way.

Age
CVD becomes increasingly common with advancing age. With advancing age, the heart undergoes physiologic changes, increasing the susceptibility for CVD. For example, the aged heart muscle may relax less completely between beats, resulting in the pumping chambers becoming stiffer and enlarged, thereby may work less efficiently. Such age-related changes may increase the rate of disease development. The negative effects of age on the cardiovascular system need to be separated from effects related to sedentary lifestyle. Some of these age-related changes can be prevented or delayed with increased physical activity (Pugh and Wei 2001).

Family history of cardiovascular disease
A family history of CVD is an independent risk factor for coronary diseases (Weijmans et al. 2015). There are additional ways of defining family history of CVD, for example premature occurrence6 and, familial aggregation (Pandey et al. 2014). Numerous mechanisms have been discussed in order to explain this further, such as accumulation of both known and unidentified environmental and heritable risk factors (deGoma et al. 2012). It is likely that family history of CVD is a mixture of a number of factors such as early life events (Gluckman et al. 2008) and for example childhood socioeconomic position (van de Mheen et al. 1998) acting together to increase the risk of CVD. Parental history of premature CVD has also been associated with increased accumulation of coronary artery calcium, a risk factor for future CVD in asymptomatic individuals (Pandey et al. 2014).

6 There are different ways of defining premature occurrence; one way is events of CVD occurring before the age of 55 years in male relatives and before 65 years in female relatives (Pandey et al. 2014).
Gender/sex

Males are at greater risk of CVD than pre-menopausal females. Once past the menopause, the risk of CVD for females approaches that of males. Risk of stroke however, does not seem to have the same strong age-dependent gender difference. It is generally believed that the fact that women on average have MI later in life is due to the protective effects of female sex hormones, but differences in diet and smoking may also be important in explaining gender differences in CVD (Kannel and Levy 2004; Lawlor et al. 2001).

In reporting risk factor distribution among controls in the INTERHEART study, it is possible to get a picture of gender differences. The distribution of risk factors varied significantly between males and females. Fewer women than men had elevated blood lipids, were current or former smokers, performed regular physical activity, and fewer women were alcohol consumers. Moreover, women were significantly more likely to have high blood pressure compared to men (Anand et al. 2008).

Risk factors, which were more strongly associated with MI in women compared to men, included high blood pressure, diabetes, alcohol intake, and physical activity. Only former smoking was more strongly associated with MI in men compared to that in women. The association of current smoking, unhealthy diet, abdominal obesity, and psychosocial risk factors for MI did not vary significantly by sex. Generally, risk factors were more strongly associated with MI in younger (60 years) compared to older (above 60 years) women and men. Interestingly, the protective effects of physical activity and MI and regular alcohol consumption and MI were stronger among older men than younger men (Anand et al. 2008).

Largely speaking, similar risk factor associations with MI are present in women and men for elevated blood lipid levels, current smoking, abdominal obesity,
unhealthy diet, and psychosocial stress factors. There are studies showing sex/gender differences, influenced by age, in blood lipids and BMI and WHR. For older women, a slightly higher BMI is likely to be associated with lower all-cause mortality whereas central obesity measured via WHR is associated with an increased mortality. These findings were not found in younger women (Lindqvist et al. 2006). There are also age-specific associations showing that high cholesterol is more important for younger women and high triglycerides are more important for older women regarding both mortality and incidence of MI (Lindquist et al. 2002). The gender/sex risk differences in CVD in associations to blood lipids have been known for some time (Lapidus et al. 1985; Wilhelmsen et al. 1973). Risk factors for CVD have been reported to be associated with a higher relative risk of MI for women compared to men (Reuterwall et al. 1999). On average, women experience their first MI nine years later than men do. This is probably related to higher risk factor prevalence among men at earlier age (Anand et al. 2008), but also to hormonal differences (Kannel and Levy 2004; Lawlor et al. 2001).

Interaction between risk factors

Interaction refers to when the effects of two factors present at the same time are greater than the effects of each individual factor. A number of studies have studied interaction between multiple risk factor exposure and CVD outcome.

For example, in 1999, Reuterwall and co-workers analysed the interaction between gender and the different risk factors was evaluated from the estimated crude relative risk (RR), using departure from additivity as the measurement of interaction. Synergy index (SI), was calculated. They analysed a number of risk factors (diabetes, total cholesterol, triglycerides, high blood pressure, overweight, abdominal obesity, physical inactivity, smoking, adjusted for previous smoking and job strain) in order to understand if they interacted with gender on the risk of

7 Interaction is explained further in the methods section.
MI (Reuterwall et al. 1999). They showed that SI ranged from 1.04 for high blood pressure, 1.41 and 1.49 for total cholesterol and triglycerides, 1.18 for diabetes, 1.2 for overweight, 1.56 of abdominal obesity, 1.28 for physical inactivity, 1.1 for job strain to the strongest interaction at an SI of 1.79 for smoking (Reuterwall et al. 1999).

Other types cardiovascular disease
The following paragraphs are an overview of other major types of CVD. The four main types of arrhythmia are premature (extra) beats, supraventricular arrhythmias, ventricular arrhythmias, and bradyarrhythmias. Premature heartbeats is the most common type of arrhythmia and can have both atrial and ventricular origin. Supraventricular arrhythmias are tachycardia that starts in the atria or atrophic ventricular (AV) node.

Atrial fibrillation and atrial flutter
Atrial fibrillation (AF) is the most common type of serious arrhythmia. It involves a very fast and irregular contraction of the atria. As a result, the atrium is not able to pump blood into the ventricles as needed. The risk of AF increases with age, stroke and heart failure are the two major complications of AF (Camm et al. 2010). In atrial flutter, the heartbeat is fast and regular and it is much less common than AF, but has similar symptoms and complications (Blomstrom-Lundqvist et al. 2003).

Heart failure
Heart failure can be defined as when the heart is unable to pump out enough oxygenated blood to the body. As the heart is pumping less effectively, blood may back up in other areas of the body, resulting in, for example ankle swelling. The most common causes of heart failure are coronary artery disease, high blood pressure and diabetes (McMurray et al. 2012).
Rheumatic heart disease
Rheumatic heart disease is caused by damage to the heart valves and heart muscle from inflammation and scarring caused by rheumatic fever. Rheumatic fever is caused by an abnormal bodily response to a streptococcal bacterial infection, usually beginning as sore throat or tonsillitis in children. The incidence of rheumatic fever is declining most parts of the world and is lower in developed countries (Seckeler and Hoke 2011).

Artery disease
Artery disease can be related to the progression of atherosclerosis but can also be caused by for example trauma, radiation injury, aneurysms, and diseases that cause vascular inflammation. There are a number of different types of artery diseases, for example PAD, describe a restricted circulation in at least one peripheral artery. Other examples are artery disease of the kidney, or the brain (Hiatt et al. 2008).

Shift work and morbidity of coronary heart disease
A growing body of evidence have studied the association between shift work and CHD, the major part with positive findings with a number of studies exemplified from here on.

Alfredsson and co-workers (1982) did not find any association between shift work and MI in a case-control study of 1 216 participants. The exact prevalence of shift work was not stated, (RR 1.25 (95 % confidence interval (CI) 0.97–1.62)) (Alfredsson et al. 1982). Falger and Schouten (1992) did a case-control study analysing the association between MI and workers with prolonged or irregular working hours or shift work. They did not find any association (OR 1.16 (95 % CI 0.68-2) for the 458

8 Malformation of a blood vessel.
participants (99 cases with exposure to the specified working schedule) (Falger and Schouten 1992).

Alfredsson and co-workers (1985) followed 958 069 participants in a cohort study analysing hospitalisation for MI. They reported that the standardised mortality ratio\(^9\) for exposure to irregular working hours was 115 (95 % CI 104-126) for men and, 152 (95 % CI 119-191) for women. The exact number of participants with irregular working hours was not stated (Alfredsson et al. 1985). Knutsson and co-workers (1986) used a prospective cohort design, where 504 (78 % shift workers) participants were followed using IHD as the main outcome variable. The study reported that shift work was associated with IHD after 11 to 20 years exposure (RR 2.2 for 11-15 years of shift work and RR 2.8 for 16-20 years of shift work) (Knutsson et al. 1986). Kawachi and co-workers (1995) did a prospective cohort study that comprised 79 109 (40.6 % shift workers) female nurses, they reported a RR of CHD of 1.38 (95 % CI, 1.08-1.76) (Kawachi et al. 1995). In 1999, Knutsson and co-workers (1999) did a case-control study comprising 4 648 participants with 252 male cases of MI exposed to shift work; the corresponding number for females was 97. The study analysed increased risk of MI among shift workers. They found that shift work was associated with an increased risk of MI (OR 1.3 (95 % CI 1.1-1.6) for men and 1.3 (95 % CI 0.9-1.8 for women) (Knutsson et al. 1999).

Haupt and co-workers (2008) used data from a cross-sectional survey to analyse if shift work was associated with atherosclerosis and MI, among 2 510 participants (28 % shift workers). They found that shift work was associated with atherosclerosis and that the hazard ratio (HR) for younger shift workers risk of MI was 1.53 (95 % CI 1.06–2.22) (Haupt et al. 2008).

\(^9\) A way of quantifying an increase or decrease in mortality in a study compared to the general population.
The possibly adverse effect of shift work on the cardiovascular system was highlighted in an early review that included studies on fatal events and studies combining fatal and non-fatal events and one study that separated the two (Åkerstedt et al. 1984). A later review estimated that shift workers had a 40% increased risk of CVD (Kristensen 1989), the same conclusion was put forward about 10 years later in another review (Bøggild and Knutsson 1999). Another review, that included studies using either fatal, combined fatal and non-fatal or separated fatal and non-fatal events as outcome variable, concluded that the epidemiological evidence for a causal association between shift work and IHD was limited. However, the same review could be viewed as rather restrictive in its assessment of the results in the included studies (Frost et al. 2009). A later review concluded that there was moderate support for the association between shift work and CVD. In comparison to some of the other reviews on this issue, this was somewhat more transparent in its grading of their findings by the use of Royal College of General Practitioners three-star system (X. S. Wang et al. 2011) in assessment of the included publications.

A meta-analysis from 2012 that comprised over two million people concluded that shift work was associated with MI (risk ratio 1.23 with 95% CI 1.15-1.33), and ischemic stroke (risk ratio 1.05 95% CI 1.01-1.09). It also concluded that shift work was associated with coronary events (risk ratio of 1.24 95% CI 1.10-1.39). That study had rather generous inclusion criteria, resulting in an analysis conducted on an extensive body of evidence. They included older studies that usually do not appear in the discussion on the association between shift work and CVD (Vyas et al. 2012). The issue of study quality in early studies on shift work and CVD has been addressed previously (Kristensen 1989). In their generous inclusion criteria, there is a risk of bias regarding the association between shift work and CVD. Some of the articles they include have made exposure assessments that potentially confounds the effect of the exposure, or not reporting how the exposure was
assessed, for example just using type of employment as a proxy for shift work exposure.

Shift work and cardiovascular disease mortality

A number of studies have analysed if CVD mortality is greater for shift workers compared to day workers. Rafnsson and Gunnarsdottir (1990) found, in their retrospective cohort study of 160 shift workers, that the standardized mortality ratio for IHD mortality was 125 for (Rafnsson and Gunnarsdóttir 1990). Another cohort study reported a standardised relative rate for CHD related mortality of 1.24 (95 % CI 1.04-1.49) among shift workers with at least 30 years of shift work exposure. In that study, 43 % of the 5 442 participants were shift workers (Karlsson et al. 2005). Fujino and co-workers (2006) followed 17 649 male industrial workers (11.5 % shift workers and 4.9 % night workers) in a prospective cohort study. They found that shift workers was associated with an increased risk of IHD mortality compared to day workers (RR 2.32, 95 % CI 1.37-3.95). Permanent night work on the other hand, was not associated with increased risk of IHD (RR 1.23 95 % CI 0.49 - 3.10 (Fujino et al. 2006).

A number of other studies did not find any support for the association between shift work and CVD mortality, reporting risk estimates ranging from 0.64 to 1.22. McNamee and co-workers (1995) reported an OR of 0.90 (90 % CI 0.68–1.21) in a case-control study among their 934 participants (305 cases of IHD exposed to shift work) for coronary mortality (McNamee et al. 1996). In a nested case-control study, Steenland and Fine (1996) reported that shift work was not associated with an increased IHD mortality (OR of 0.64 (95 % CI 0.28–1.47)) in 21 491 study participants (163 mortal cases of IHD exposed to shift work) (Steenland and Fine 1996). Bøggild and co-workers (1999) reported, in a prospective cohort study comprising 5 249 participants (208 cases of IHD exposed to shift work), no association between shift work and IHD (OR 0.9 (95 % CI 0.7-1.1)) (Bøggild et al. 1999).
A retrospective cohort study comprising over 138,000 person-years (exact shift work prevalence not reported) reported no increased CVD mortality related to shift work. But shift work was associated with increased cerebrovascular mortality (rate ratio 1.19 (95% CI 1.01-1.39)) but not night work (rate ratio 1.06 (95% CI 0.86-1.31)) (Virtanen and Notkola 2002).

A cohort study from Germany on male industrial workers reported that shift work was not associated with increased IHD-related mortality (HR 0.77 (95% CI 0.52-1.14)). The study comprised 31,143 participants, 45% shift workers (Yong et al. 2014). In a cohort study from 2010, Hublin and co-workers followed 20,142 participants (9.5% shift workers and 1.7% night workers) analysing if shift work was associated with CHD mortality. The HR for CHD mortality in relation to shift work was 1.09 (95% CI 0.82-1.44) for men and 1.22 (95% CI 0.83-1.79) for women (Hublin et al. 2010).

A meta-analysis reported that shift work was not associated with increased rates of all-cause or vascular specific mortality (Vyas et al. 2012). Studies based on death certificates have well-known limitations. One is ill-defined cause of death, especially among elderly persons. The frequency of autopsy is very low in Sweden, 7% in female and 16% in males (Socialstyrelsen 2011). All this may result in physicians having insufficient information about the patient, contributing to the issues regarding mortality studies based on death certificates.

Shift work and risk factor interaction

Interaction describes a situation where the exposure to multiple risk factors, in this case to CVD such as smoking or elevated blood pressure and shift work, results in a greater risk increase for MI compared to the single risk factor exposure.
Tenkanen and co-workers (1998) have previously studied the joint effect of risk factor and shift work exposure and its association with CHD. They also studied the effects of multiple exposures of the included risk factors and their association with CHD. They concluded that there was a joint effect of shift work with the included risk factors (smoking, low leisure physical activity, and BMI ≥ 28) which increased the risk of CHD from 87 % to 169 % (Tenkanen et al. 1998). Another study found that exposure to any two or three of shift work, noise, and physical workload increased the RR of CHD with around 30 % to 70 %. They proposed that noise exposure could affect both short- and long-term processes related to atherosclerosis (Virkkunen et al. 2006). There is a joint effect of shift work and high blood pressure on the risk of CHD (Virkkunen et al. 2007).

However, analysing the joint effects is only performing a part of an interaction analysis. Knutsson and co-workers (1999) studied interaction as departure from additivity\(^{10}\) using SI among shift workers. They found no interaction between shift work and job strain on the risk of MI (SI 0.7 (95 % CI 0.3 to 1.4)) (Knutsson et al. 1999).

Shift work and parental history of cardiometabolic disease

Pietroiusti and co-workers (2010) adjusted their results for family history of cardiometabolic disease or comorbidity\(^{11}\) when studying the association between shift work and the metabolic syndrome. They found no increased association related to family history of metabolic syndrome and the risk of metabolic syndrome. Kawamaki and co-workers (1999) showed that a family history of diabetes was associated with an increased risk of diabetes type II (HR 2.45 (95 % CI

\(^{10}\) Explained in detail in the methods section.

\(^{11}\) Defined as a family history of either obesity, high blood pressure, elevated blood lipids, diabetes, IHD, or a combination of the listed diagnoses or risk factors.
No other studies that investigated the association or interaction between shift work and family history of CVD were found.

Shift work and ischemic stroke

A few studies have analysed the association between shift work and incidence of ischemic stroke, or the association with ischemic stroke mortality.

A retrospective cohort study of 5,442 participants, 43% shift workers reported that shift work was not associated with increased mortality from ischemic stroke (standardised relative rate 1.56 (95% CI 0.98-2.51)) (Karlsson et al. 2005). One study did not find any association between the incidence of ischemic stroke and shift work (odds ratio (OR) of 1.0 (95% CI 0.6-1.8)). That was a case-control study of 607 participants that included 44 cases of ischemic stroke that were exposed to shift work (Hermansson et al. 2007). Another study found an association between ischemic stroke and shift work for female nurses working rotating shift with night shifts. The study was based on a prospective cohort comprising 80,108 participants, 59.5% had at some point been engaged in one or more years of shift work. They reported a HR of 1.04 (95% CI 1.01-1.07), for ischemic stroke for every five years of rotating night shift work (Brown et al. 2009).

The data from the two studies on ischemic stroke incidence and shift work were compiled in a meta-analysis resulting in a risk ratio of 1.05 (95% CI 1.01-1.09) (Vyas et al. 2012). In a systematic review published in 2013, the authors concluded that the epidemiological evidence for an association between shift work and ischemic stroke was limited (Jakobsson and Gustavsson 2013).
Potential mechanisms affecting cardiovascular disease and shift work

Many biological variables exhibit a circadian rhythm, a rhythm that can be disrupted by shift work. The circadian rhythm in humans is governed by the master clock in the suprachiasmatic nucleus in the hypothalamus in the brain. From there, signals transmit to the pineal gland and stimulate production and secretion of the hormone melatonin to the blood. Melatonin in turn influences the secretion of cortisol and other hormones affecting the circadian body rhythm including sleep.

Circadian disruption
Circadian disruption and stress related to interference with the metabolic and hormonal functions are examples of proposed pathways linking shift work to CVD and other chronic conditions (Green et al. 2008). Melatonin has been proposed to play a vital role in preventing oxidative stress, and may hold part in the explanation behind the risks associated with circadian disruption (Faraut et al. 2013). A study from 2015 indicated that lack of sleep can lead to acute epigenetic changes and altering of metabolically important tissues clock genes (Cedernaes et al. 2015). This is another mechanism that could hold part of the explanation behind the association between shift work and metabolic disorders such as type II diabetes.

Metabolic disturbance
Shift work has been associated with obesity, metabolic syndrome, diabetes and dyslipidaemias (Ulhoa et al. 2015). Circadian disruption related to shift work has been shown to adversely affect blood lipids and blood pressure and is thereby likely to increase the risk of CVD (De Bacquer et al. 2009). Unhealthy dietary patterns (Wirth et al. 2014) are also likely to play a part in the association between metabolic disturbances and shift work.
Life style factors and stress
Shift work has been also been associated with circadian disruption that could affect behaviour like sleep–wake patterns, sleep debt, insomnia, and sleepiness. Shift work has also been associated with tobacco smoking, alcohol consumption and, unhealthy dietary patterns (Puttonen et al. 2010). The increased prevalence among shift workers of for example tobacco smoking and unhealthy dietary patterns may also be linked to the increased risk of developing CVD (Wirth et al. 2014; Zhao and Turner 2008). The misalignment between social and biological time, sometimes referred to as social jetlag, affects shift workers to some extent. It has been associated with unhealthy behaviours (Wittmann et al. 2006), and was put forward as one of the most important issues in explaining the association between shift work and disease (Bøggild and Knutsson 1999).

Cardiovascular effects
Shift work is associated with subclinical atherosclerosis (Haupt et al. 2008) and markers of systemic inflammation (Puttonen et al. 2010; Puttonen et al. 2011). In a study in Finnish middle-aged men, weekend shift work appeared to accelerate the formation of carotid atherosclerosis, at an even greater speed among men with pre-existing CVD (A. Wang et al. 2015). It is possible that the arteries of shift workers are more affected by atherosclerosis, this would could be related to a weakened inside (intima) of the blood vessel and thereby increasing the risk of atherosclerosis that later could rupture and cause a thrombosis. It would also be of interest to study the potential association between shift work and markers of vascular inflammation, such as Apo-lipoprotein-associated phospholipase A2 (Lp-PLA2) (Rudolf and Lewandrowski 2014). Such studies could bring further understanding to the potential pro-inflammatory effects of shift work.

Shift work has also been associated with arrhythmias (Härenstam et al. 1987; van Amelsvoort et al. 2001), prolonged QTc interval, and conduction disorders (Meloni
et al. 2013), which in term may indicate a poorer prognosis after a MI, and at the same time imply that shift work may affect the functionality of the heart muscle. Low heart rate variability (HRV) is an established method for assessing cardiac autonomic regulation (Malik et al. 1996), and has been associated with greater risk of CVD in a meta-analysis from 2013 (Hillebrand et al. 2013). Low HRV was reported to be associated with night shift work in a study from South Korea (S. Lee et al. 2015). In a study from 2015, the authors reported an association between lifetime exposure to shift work and unfavourable changes in autonomic cardiac control related to a decrease in parasympathetic modulation, indicating a higher level of cardiac stress. The same study also reported an association between lifetime exposure to shift work and increased blood pressure (Souza et al. 2015). There are other studies that also support an association between shift work and high blood pressure, for example (Ohlander et al. 2015), while other studies do not (Gholami-Fesharaki et al. 2014; Gholami Fesharaki et al. 2014). Shift work is likely to have negative cardiac effects, but more research is needed to further explain this area.

Summary

There are evidence supporting the association between shift work and increased risks of CVD. There may be a number of mechanisms involved in these associations, such as sleep disturbance, cardiac effects, and associated sedentary lifestyle factors. More research is needed to establish the contribution of these mechanisms to the association between shift work and CVD.
AIM AND OBJECTIVES

The aim of this thesis was to further study the association between shift work and CVD by focusing on the following objectives:

- Do shift workers have an increased risk of ischemic stroke compared to day workers?
- Do shift workers have an increased risk of case fatality after a MI compared to day workers?
- Does shift work interact with CVD risk factors to increase the risk of MI?
- Does shift work interact with parental history of MI or SCD to increase the risk of MI?
METHODS

Study populations

The following chapter gives a description of the study populations and analytical approaches utilised in papers I-IV.

MONICA/VIP (paper I)

This was a nested case–control study consisting of the Northern Sweden Monitoring of Trends and Determinants in Cardiovascular Diseases (MONICA) study and the Västerbotten Intervention Programme (VIP). The MONICA study started in 1985 in two counties in northern Sweden, Västerbotten and Norrbotten. VIP is an on-going intervention program focusing on prevention of CVD and diabetes type II in Västerbotten County in Sweden. From January 1, 1985 to September 30 2000, about 66 300 individuals had participated in the VIP or MONICA health surveys.

Case finding was based on reports from hospitals and general practitioners, screening of hospital discharge registers and all death certificates. In fatal cases, the data from death certificates and from necropsy reports were used to complete the diagnosis (B Stegmayr and Asplund 2003).

The diagnosis of ischemic stroke was based on the definition from the International Classification of Diseases, ninth revision, as follows: brain infarction or ischemic stroke (ICD-9 434) and no signs of hemorrhage in a computed tomography (CT) scan or at necropsy. Only cases classified as definite events were included as non-fatal cases. In fatal events, possible infarction and unclassified infarction were included (B. Stegmayr et al. 1994). For each case, five matched controls without known CVD and cancer were selected from the MONICA and VIP cohorts.
SHEEP/VHEEP (paper II, III, and IV)
Cases were defined as all first episodes of non-fatal and fatal first events of MI, and were collected from a case-referent database that consisted of two parallel studies: the Stockholm Heart Epidemiology Programme (SHEEP), and the Västernorrland Heart Epidemiology Program (VHEEP). The combined study base of the two studies contained all Swedish citizens living in the counties of Stockholm or Västernorrland in Sweden, who were free of previously diagnosed MI.

Case fatality in paper II was the proportion of cases with first time MI consistent with the previously described criteria, which were fatal within 28 days after the event.

Paper III and paper IV used the following definition of MI cases. Cases were included at the time of incidence of MI. They were identified from (a) the coronary and intensive care units at the internal medicine departments at all the emergency hospitals within the counties of Stockholm and Västernorrland, (b) the hospital discharge register for the same counties, and (c) death certificates from the National Register of Causes of Death at Statistics Sweden. The criteria of diagnosis included (a) certain symptoms according to information on case history, (b) specified changes in blood concentrations of the enzymes creatine kinase and lactate dehydrogenase, (c) specified electrocardiographic changes, and (d) necropsy findings. The diagnosis of MI required two of the criteria a–c to be met, or that necropsy findings showed myocardial necrosis of an age compatible with the time of onset of the disease. A small group of cardiologists assessed the medical inclusion and exclusion criteria for the cases in hospital; thus, the same diagnostic criteria were applied for all cases in hospital.

Cases were the patient died before admission to hospital was identified via special routines at the Statistics Sweden. Cases with previous hospital admissions for MI
were excluded from the study base. Non-fatal cases answered a questionnaire as soon as possible after recovering. For fatal cases, questionnaire information was obtained from a close relative three to six months after the occurrence of MI. To reduce the risk of including participants that were retired, the age limit for inclusion in the analyses was set to 65 years and unemployed or retired cases were excluded.

Exposure information
Shift work exposure and prevalence of covariates such as low level of spare time physical activity, current tobacco smoking, BMI ≥ 28, diabetes type II, low socioeconomic status, high blood pressure, and job strain were assessed through questionnaire data, and sometimes completed with data from health examinations as the case for BMI.

In paper I, the shift work variable was based on the responses to two questions from the population surveys, since the question regarding work hours was not consistent in all the surveys. One question was from the VIP study [“Do you have shift work or weekend work? yes (a) or no (b)"], and the other question came from the MONICA study [“What are your normal work hours? Regular work hours (a), shift work (b), variable work hours (c) and I am not gainfully employed (d)"]. The respondents who answered “a” to the first question and those who responded “b” or “c” to the second question were regarded as shift workers.

In paper II-IV, shift work exposure was assessed through the following questions: (1) Did you undertake shift work (during the most recent 5 years of work)? If the answer was yes, the respondent was asked to add information about the type of shift schedule. (2) To reduce the risk of including participants that were retired, the age limit for inclusion was set to 65 years, and unemployed or retired cases were excluded. The second question concerned when during the day that the majority of
the work hours was scheduled. The response alternatives were (a) 06:00–18:00, (b) 18:00–22:00, (c) 22:00–06:00, (d) a combination of (a) and (b), (e) a combination of (b) and (c), (f) a combination of (a) and (c), and (g) a combination of (a), (b), and (c). If a participant answered yes to question one or chose response alternatives b–f to question two, he or she was regarded as being exposed to shift work (14.2 %). If the respondent answered no to question 1 and did not chose alternatives b–f of question 2, the respondent was regarded as day worker (85.7 %), and only 0.2 % of the respondents were excluded because their answers were not possible to categorise.

Low level of leisure time physical activity was considered when a respondent indicated that he or she did a minimum of physical activity in their leisure time; this was compared to respondents that were engaged in moderate physical activity up to training and competing in different sports. Current tobacco smoking was compared to non-smokers. Respondents that reported that they had quit smoking more than one year ago were considered as non-smokers in paper I. In paper II, current smokers included respondents who had stopped smoking within the last 2 years before inclusion, and non-smokers included respondents quitting more than 2 years ago. Occasional smokers were excluded from the analyses; thereby some relevant cases of current smokers were lost. However, given the variance inherited in that variable, it is likely that this contributes to a higher validity in the results.

BMI was analysed at BMI ≥ 28 as an indicator of sub-clinical obesity (Thomas et al. 2001), usually defined as BMI ≥ 30.

Diabetes type II was considered at a level of fasting glucose above 6.7 mmol/L or self-reported diabetes type II in the questionnaire, or if a respondent required insulin or regularly medicated for disease consistent with ICD 9-code 250, or if reported pharmacological treatment against diabetes type II in the questionnaire.
Educational level was used as a proxy variable to estimate socio-economic status. Cases with compulsory school (9 years) as their highest education were considered to have low socio-economic status; participants with education longer than 9 years were used as reference.

The concept of job strain was introduced in 1979 (Karasek 1979). Job strain was measured using a short version of the questionnaire in Swedish (Theorell et al. 1988). It had five questions about psychological demands and six questions about decision latitude, each with four graded responses ranging from 1=never to 4=always or almost always. The work experience during the last 5 years prior to inclusion in the study was considered. The variable was based on the individual quota between demand and control. Job strain was considered present for the respondents who were in the upper tertile for the demand questions and the lower tertile for decision latitude.

Blood lipids were based on fasting samples, participants with total serum triglyceride levels of ≥ 2.3 mmol/l or total serum cholesterol levels of ≥ 6.45 mmol/l were considered at risk. Data on blood lipids were not available for deceased cases of MI in paper II.

In paper I, high blood pressure was identified if a participant had a systolic pressure of ≥ 140 mmHg and/or a diastolic pressure of ≥90 mmHg or was on antihypertensive medication. In paper II and III, high blood pressure was considered present at either ≥ 170 mmHg in systolic or ≥ 95 mmHg in diastolic blood pressure, or pharmacological treatment for disease consistent with ICD 9-code 40, or earlier pharmacological treatment for high blood pressure that ended less than 5 years before inclusion in the study.
Statistical methods

All calculations were, when so was possible, made separately for men and for women. For the covariates, the differences between shift- and day workers were analysed with chi-square tests or independent samples t-test depending on the type of data. A p-value of 0.05 or less was considered significant in the chi-square tests or independent samples t-test. In all papers, associations between shift workers outcome variables were assessed using logistic regressions. In logistic regressions analyses and the interaction analyses, the 95 % CI could not contain 1 in order to be considered significant.

Interaction on an additive scale
Additive interaction between two risk factors for risk of an outcome is described as:

\[A_1B_1 - A_0B_1 - A_1B_0 + A_0B_0 \]

For two dichotomous factors A and B: A:B \(_1\) is when both factors A and B are present, A:B \(_0\) is when factor A is present but factor B is absent, A:B \(_1\) is when if factor A is absent but factor B is present. A:B \(_0\) is the reference category where none of the exposures is present.

In paper III and paper IV, interaction as departure from additivity was using the following approach. Logistic regression analyses were performed on shift work and CVD risk factors, where the risk factors were included as categorical indicator variables (with A:B \(_0\) as reference). The results of these calculations were performed in order to derive the OR A:B \(_1\), OR A:B \(_0\) and OR A:B \(_1\) as components for the included interaction analyses.

Interaction between shift work and the parental MI or SCD was analysed by using RR due to interaction (RERI), attributable proportion due to interaction (AP) and
Rothmans SI with 95 % CI (Kalilani and Atashili 2006; Rothman et al. 2008). RERI, AP and SI and 95 % CI were calculated using a previously published and publicly accessible SAS program (Lundberg et al. 1996).

\[
RERI = \frac{OR_{A_1B_1} - OR_{A_1B_0} - OR_{A_0B_1} + 1}{OR_{A_1B_1}}
\]

RERI = 0 means no interaction or exactly additivity; RERI > 0 means positive interaction or more than additivity; RERI < 0 means negative interaction or less than additivity; RERI can go from - infinity to + infinity. RERI was considered significant when the 95 % CI did not contain 0.

\[
AP = \frac{RERI}{OR_{A_1B_1}}
\]

AP = 0 means no interaction or exactly additivity; AP > 0 means positive interaction or more than additivity; AP < 0 means negative interaction or less than additivity; AP can go from – 1 to + 1. AP was considered significant when the 95 % CI did not contain 0.

\[
SI = \frac{OR_{A_1B_1} - 1}{(OR_{A_1B_0} - 1) + (OR_{A_0B_1} - 1)}
\]

SI = 1 means no interaction (the sum of effects due to multiple causes). SI > 1 refers to a positive interaction and SI < 1 refers to a negative interaction. SI was considered significant when the 95 % CI did not contain 1.

All of the statistical calculations were carried out using the statistical software SPSS 12.0 for paper I, SPSS 16.0 for paper II, paper III 17.0, and paper IV 21.0 (SPSS Inc. Chicago, IL, USA). Measures of interaction were calculated in SAS 9.1 for Windows.
Ethical considerations

Both studies (MONICA and SHEEP/VHEEP) conformed to the principles of the Helsinki Declaration of 1964, and were approved by Regional Ethical Committees in Sweden. When reporting potential risks associated with an individual’s occupation, there is a risk that this will affect the individuals negatively. For example, they can feel less motivated towards their work. On the other hand, not reporting such risk associations would keep the same individuals uninformed of the potential risk exposure. Conducting research on shift work increases the opportunity for prevention and early detection of CVD. By that, the benefits for the shift workers are likely to supersede the negative effects of the information from this type of research.
RESULTS

Shift work and ischemic stroke (paper I)

The analyses in paper I included 194 cases of ischemic stroke, of which 44 cases were exposed to shift work. No differences were found between the day workers and shift workers regarding the prevalence of the assessed risk factors.

Table 1: Age-adjusted odds ratios (OR) and 95 % CI for shift work in comparison with day work and the risk of ischemic stroke, with adjustment for different covariates — results of logistic regression analyses.

<table>
<thead>
<tr>
<th>Model 1</th>
<th>Men</th>
<th></th>
<th>Women</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift work</td>
<td>1.0 0.6-1.8</td>
<td>1.0 0.6-1.8</td>
<td>1.0 0.6-1.8</td>
<td>1.0 0.6-1.8</td>
</tr>
<tr>
<td>Shift work, adjusted for job strain</td>
<td>1.3 0.7-2.3</td>
<td>1.0 0.5-1.9</td>
<td>1.1 0.6-2.0</td>
<td>1.1 0.6-2.0</td>
</tr>
<tr>
<td>Shift work, adjusted for smoking</td>
<td>1.0 0.6-1.8</td>
<td>1.1 0.6-2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shift work, adjusted for low educational level</td>
<td>1.0 0.6-1.9</td>
<td>1.1 0.6-2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shift work, adjusted for job strain, smoking, low educational level</td>
<td>1.2 0.6-2.3</td>
<td>1.0 0.6-2.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model 2</th>
<th>Men</th>
<th></th>
<th>Women</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift work</td>
<td>1.0 0.6-1.8</td>
<td>1.0 0.6-1.8</td>
<td>1.0 0.6-1.8</td>
<td>1.0 0.6-1.8</td>
</tr>
<tr>
<td>Shift work, adjusted for high triglycerides</td>
<td>1.0 0.5-2.0</td>
<td>1.0 0.5-1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shift work, adjusted for high total cholesterol</td>
<td>1.0 0.5-1.8</td>
<td>0.9 0.5-1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shift work, adjusted for high blood pressure</td>
<td>0.9 0.5-1.8</td>
<td>0.6 0.3-1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shift work, adjusted for high triglycerides, high total cholesterol, high blood pressure</td>
<td>1.1 0.5-2.2</td>
<td>0.9 0.4-1.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The results of the logistic regressions, displayed in table 1, did show small but non-significant differences between day- and shift workers and the risk for ischemic stroke. In model 1, adjusting the OR for behavioural related covariates, none of the regressions indicated any significant associations between shift work and ischemic stroke. The same results were found in model 2 that adjusted for medical covariates.
Shift work and case fatality of myocardial infarction (paper II)

The percentage of male shift workers who died of MI within 28 days (case fatality) after the event was 21.2 % of 210 cases, compared to 14.3 % of 937 cases among day workers. The corresponding figures for females were 13 % of 69 cases of MI among shift workers compared to 21.2 % of 326 cases among day workers. There were marked differences between day- and shift workers regarding current tobacco smoking, BMI above 28 and low socioeconomic status for both men and women. Physical inactivity, job strain and diabetes type II were more common among male shift workers compared to male day workers; no such difference was seen for women. No other major differences were found (results presented in detail in paper II).

Table 2: Age-adjusted odds ratios (OR) and 95 % CI for shift work in comparison with day work and risk of 28-day case fatality of MI, with adjustment for different covariates — results of logistic regression analyses.

<table>
<thead>
<tr>
<th></th>
<th>Men OR</th>
<th>95 % CI</th>
<th>Women OR</th>
<th>95 % CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift work</td>
<td>1.6</td>
<td>1.1-2.4</td>
<td>0.6</td>
<td>0.3-1.2</td>
</tr>
<tr>
<td>Shift work, adjusted for physical inactivity</td>
<td>1.6</td>
<td>1.1-2.3</td>
<td>0.7</td>
<td>0.3-1.4</td>
</tr>
<tr>
<td>Shift work, adjusted for current tobacco smoking</td>
<td>1.7</td>
<td>1.1-2.4</td>
<td>0.6</td>
<td>0.3-1.2</td>
</tr>
<tr>
<td>Shift work, adjusted for BMI ≥ 28</td>
<td>1.6</td>
<td>1.1-2.4</td>
<td>0.4</td>
<td>0.2-1.1</td>
</tr>
<tr>
<td>Shift work, adjusted for diabetes type II</td>
<td>1.7</td>
<td>1.1-2.4</td>
<td>0.6</td>
<td>0.3-1.2</td>
</tr>
<tr>
<td>Shift work, adjusted for low socioeconomic status</td>
<td>1.4</td>
<td>0.8-2.3</td>
<td>0.3</td>
<td>0.1-1.1</td>
</tr>
<tr>
<td>Shift work, adjusted for high blood pressure</td>
<td>1.8</td>
<td>1.2-2.7</td>
<td>0.5</td>
<td>0.2-1.1</td>
</tr>
<tr>
<td>Shift work, adjusted for job strain</td>
<td>1.6</td>
<td>1.1-2.4</td>
<td>0.4</td>
<td>0.2-1.0</td>
</tr>
<tr>
<td>Shift work, adjusted for BMI ≥ 28, diabetes type II and high blood pressure</td>
<td>2.2</td>
<td>1.5-3.2</td>
<td>0.5</td>
<td>0.2-1.4</td>
</tr>
<tr>
<td>Shift work, adjusted for physical inactivity, current tobacco smoking, low socioeconomic status and job strain</td>
<td>1.7</td>
<td>1.1-2.6</td>
<td>0.4</td>
<td>0.1-1.3</td>
</tr>
</tbody>
</table>
As displayed in table 2, the crude OR for case fatality following an MI for male shift workers was 1.6. Adjustments for potential risk factors yielded minor changes in the OR except for low socioeconomic status that rendered some change but to a non-significant result. When combining exposure to elevated BMI, diabetes type II and high blood pressure in a multivariate regression model in order to analyse the associations related to medical risk factors, the OR for male shift workers was 2.2. In the multivariate regression model with risk factors associated with behavioural and social factors, the OR from male shift workers was relatively constant compared to previous results.

The OR for female shift workers was 0.6, however non-significant. Adjustment for selected covariates in both univariate and multivariate regression models did not yield any significant results for female shift workers.

Socioeconomic status was also analysed using other analytical approaches, all yielding non-significant results (results not presented in this thesis). Other regression models including participants over 65 years of age were also performed. The results were largely similar to those presented using only participants under 65, except for the OR for male shift workers that was around 20 % lower (results not presented in this thesis).

Shift work, risk factor interaction and myocardial infarction (paper III)

The analyses in paper III was conducted on 4 648 participants, including 1 417 (44 %) male and 589 (41 %) female cases of MI. Shift work was more common among cases with MI in both men 17.8 % vs. 12.4 % (p <0.001), and women 16.5 % vs. 10.2 % (p <0.001).
Table 3 show SI as a measure of interaction between shift work and the specific risk factor. The results showed an interaction between physical inactivity and shift work on the risk of MI for males. For females, interactions were found between shift work and high WHR or elevated triglycerides.

Table 3. Interaction between shift work and analysed risk factors on the association with MI for males and female shift workers compared to day workers, expressed as synergy index (SI) and their confidence interval (95 % CI). OR A:B\textsubscript{0} (reference), OR A:B\textsubscript{1} OR A:B\textsubscript{0} and OR A:B\textsubscript{1} with 95 % confidence interval (95 % CI), adjusted for age. Number (n) denotes included participants in each analysis.

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th></th>
<th>Women</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BMI ≥ 28 (n=4 593)</td>
<td></td>
<td>BMI ≥ 28 (n=4 648)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR (95 % CI)</td>
<td>SI (95 % CI)</td>
<td>OR (95 % CI)</td>
<td>SI (95 % CI)</td>
</tr>
<tr>
<td>BMI ≥ 28 (n=4 593)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>BMI ≥ 28 and dw</td>
<td>1.67 (1.41-1.99)</td>
<td>1.52 (1.18-1.96)</td>
<td>1.77 (1.39-2.25)</td>
<td>1.70 (1.14-2.52)</td>
</tr>
<tr>
<td>BMI < 28 and sw</td>
<td>1.65 (1.19-2.29)</td>
<td>0.45 (0.19-1.07)</td>
<td>2.31 (1.38-3.84)</td>
<td>0.7 (0.37-3.08)</td>
</tr>
<tr>
<td>Current smoker (CM) (n=4 648)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CM and dw</td>
<td>2.33 (1.99-2.74)</td>
<td>3.36 (2.62-4.29)</td>
<td>1.48 (1.12-1.94)</td>
<td>1.33 (0.84-2.11)</td>
</tr>
<tr>
<td>Non-smoker and sw</td>
<td>3.06 (2.31-4.06)</td>
<td>1.14 (0.71-1.83)</td>
<td>5.73 (3.57-9.19)</td>
<td>1.76 (0.94-3.31)</td>
</tr>
<tr>
<td>WHR (p<3.11) (n=3 311)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>WHR and dw</td>
<td>1.75 (1.41-2.17)</td>
<td>1.41 (1.04-1.92)</td>
<td>1.48 (1.12-1.94)</td>
<td>1.33 (0.84-2.11)</td>
</tr>
<tr>
<td>Non-WHR and sw</td>
<td>1.47 (0.97-2.24)</td>
<td>0.42 (0.11-1.61)</td>
<td>4.17 (2.19-7.92)</td>
<td>4.0 (1.12-14.28)</td>
</tr>
<tr>
<td>Physically inactivity (PI) (n=614)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PI and dw</td>
<td>1.52 (1.30-1.78)</td>
<td>2.33 (1.84-2.95)</td>
<td>1.33 (1.03-1.73)</td>
<td>1.84 (1.18-2.85)</td>
</tr>
<tr>
<td>PI and sw</td>
<td>2.74 (2.03-3.71)</td>
<td>2.05 (1.07-3.92)</td>
<td>3.85 (2.42-6.14)</td>
<td>1.32 (0.65-2.67)</td>
</tr>
<tr>
<td>Elevated triglycerides (ET) (n=3 076)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ET and dw</td>
<td>2.32 (1.85-2.90)</td>
<td>2.46 (1.73-3.55)</td>
<td>1.84 (1.18-2.85)</td>
<td>1.37 (0.88-2.15)</td>
</tr>
<tr>
<td>Non ET and sw</td>
<td>3.22 (1.97-5.25)</td>
<td>1.32 (0.63-2.9)</td>
<td>9.40 (3.85-22.92)</td>
<td>5.69 (1.67-19.38)</td>
</tr>
<tr>
<td>Elevated cholesterol (EC) (n=3 284)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>EC and dw</td>
<td>1.56 (1.3-1.88)</td>
<td>2.14 (1.61-2.84)</td>
<td>1.30 (1.0-1.74)</td>
<td>1.97 (1.19-3.28)</td>
</tr>
<tr>
<td>EC and sw</td>
<td>2.21 (1.51-3.25)</td>
<td>1.34 (0.63-3.0)</td>
<td>3.72 (2.12-6.53)</td>
<td>1.68 (0.6-5.13)</td>
</tr>
</tbody>
</table>
High blood pressure (HBP) *(n=574)*

<table>
<thead>
<tr>
<th>Reference</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBP and dw</td>
<td>0.52 (0.37-0.73)</td>
<td>1.87 (1.46-2.38)</td>
</tr>
<tr>
<td>No HBP and sw</td>
<td>0.70 (0.49-1.0)</td>
<td>1.76 (1.20-2.56)</td>
</tr>
<tr>
<td>HBP and sw</td>
<td>0.82 (0.55-1.21)</td>
<td>1.0 (0.45-2.21)</td>
</tr>
</tbody>
</table>

Diabetes type II (DII) *(n=648)*

<table>
<thead>
<tr>
<th>Reference</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DII and dw</td>
<td>2.27 (1.80-2.86)</td>
<td>4.25 (2.93-6.15)</td>
</tr>
<tr>
<td>No DII and sw</td>
<td>1.49 (1.21-1.86)</td>
<td>1.82 (1.3-2.56)</td>
</tr>
<tr>
<td>DII and sw</td>
<td>3.31 (2.05-5.35)</td>
<td>1.27 (0.61-2.65)</td>
</tr>
</tbody>
</table>

a Exceeding 0.875 for women < 60 years of age, 0.9 for women > 60 years of age, and exceeding 1.0 for men
b Triglycerides ≥ 2.3 mmol/L
c Total cholesterol ≥ 6.5 mmol/L
d Blood pressure ≥ 170 mmHg in systolic and/or ≥ 95 mmHg in diastolic
e Disease consistent with ICD 9-code 250

BMI body mass index, CM current smoker, DII diabetes type II, dw day work, EC elevated cholesterol, ET elevated triglycerides, HBP high blood pressure, sw shift work, WHR waist hip ratio

Shift work and parental history of cardiovascular disease (paper IV)

Table 4 shows that there was an association and interactions between paternal history of MI or SCD and shift work on the MI risk for male shift workers. The SI was 2.39 and the AP result indicates that around 40% of MI occurring in male shift workers with parental history of MI or SCD were attributed to an interaction between two components. Interaction between shift work and parental MI or SCD, adding both parental and maternal cases together was also analysed, without finding any interactions (results not reported). No other results were found.
Table 4. OR for each of the exposure scenarios and interaction expressed as RERI, AP, and SI with 95 % CI, between shift work and analysed risk factors for males. Number of included participants in each analysis, all estimates were adjusted for age

<table>
<thead>
<tr>
<th>Father MI or SCD</th>
<th>N cases</th>
<th>N controls</th>
<th>Estimate</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>1136</td>
<td>1509</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Father MI or SCD</td>
<td>143</td>
<td>157</td>
<td>1.45</td>
<td>(1.20-1.76)</td>
</tr>
<tr>
<td>Shift work</td>
<td>257</td>
<td>245</td>
<td>1.20</td>
<td>(0.94-1.53)</td>
</tr>
<tr>
<td>Father MI or SCD & shift work</td>
<td>50</td>
<td>23</td>
<td>2.88</td>
<td>(1.75-4.57)</td>
</tr>
</tbody>
</table>

Measures of interaction on additive scale

- **RERI**: 1.32 (-0.35-2.29)
- **AP**: 0.40 (0.08-0.73)
- **SI**: 2.39 (1.02-5.60)

<table>
<thead>
<tr>
<th>Father MI before 65 years</th>
<th>N cases</th>
<th>N controls</th>
<th>Estimate</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>1164</td>
<td>1518</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Father MI before 65 years</td>
<td>99</td>
<td>85</td>
<td>1.55</td>
<td>(1.14-2.09)</td>
</tr>
<tr>
<td>Shift work</td>
<td>171</td>
<td>166</td>
<td>1.39</td>
<td>(1.10-1.74)</td>
</tr>
<tr>
<td>Father MI before 65 years & shift work</td>
<td>22</td>
<td>14</td>
<td>2.04</td>
<td>(1.04-4.00)</td>
</tr>
</tbody>
</table>

Measures of interaction on additive scale

- **RERI**: 0.12 (-1.48-1.71)
- **AP**: 0.05 (-0.63-0.74)
- **SI**: 1.10 (0.29-4.15)

<table>
<thead>
<tr>
<th>Mother MI or SCD</th>
<th>N cases</th>
<th>N controls</th>
<th>Estimate</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>1161</td>
<td>1507</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mother MI or SCD</td>
<td>146</td>
<td>115</td>
<td>1.74</td>
<td>(1.34-2.24)</td>
</tr>
<tr>
<td>Shift work</td>
<td>168</td>
<td>155</td>
<td>1.46</td>
<td>(1.16-1.85)</td>
</tr>
<tr>
<td>Mother MI or SCD & shift work</td>
<td>25</td>
<td>25</td>
<td>1.31</td>
<td>(0.75-2.29)</td>
</tr>
</tbody>
</table>

Measures of interaction on additive scale

- **RERI**: -0.97 (-1.9-0.04)
- **AP**: -0.66 (-1.66-0.34)
- **SI**: 0.33 (0.06-1.94)

<table>
<thead>
<tr>
<th>Mother MI before 65 years</th>
<th>N cases</th>
<th>N controls</th>
<th>Estimate</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>1172</td>
<td>1525</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mother MI before 65 years</td>
<td>34</td>
<td>28</td>
<td>1.58</td>
<td>(0.95-2.62)</td>
</tr>
<tr>
<td>Shift work</td>
<td>179</td>
<td>173</td>
<td>1.40</td>
<td>(1.12-1.75)</td>
</tr>
<tr>
<td>Mother MI before 65 years & shift work</td>
<td>14</td>
<td>7</td>
<td>2.59</td>
<td>(1.04-6.43)</td>
</tr>
</tbody>
</table>

Measures of interaction on additive scale

- **RERI**: 0.65 (-1.99-3.30)
- **AP**: 0.24 (-0.53-1.00)
- **SI**: 1.59 (0.31-8.24)

AP attributable proportion due to interaction, MI myocardial infarction, OR odds ratio, RERI relative excess risk due to interaction, SCD sudden cardiac death, SI synergy index, 95 % CI 95 % confidence interval
DISCUSSION

In summary, the results of this thesis did not show any associations between shift work and the risk of ischemic stroke. The result did show an elevated risk of case fatality after MI for male shift workers, no such results were found for female shift workers. Moreover, the results show interaction between some CVD risk factors and shift work and finally, parental history of MI or SCD interacts with shift work for males but not for females.

Shift work and ischemic stroke (paper I)

The results from paper I showed that shift workers did not have an increased risk of ischemic stroke compared to day workers. The findings contradict the findings of another study that analysed the same hypothesis (Brown et al. 2009).

Tüchsen analysed stroke morbidity for Danish drivers (Tüchsen 1997), but did not make any specific analysis regarding the effects of shift work but claimed that there may be a possible association between stroke and shift work. There were some differences between the studies reporting positive or negative results on the association in question. One major difference was that one study only analysed nurses working night shift (Brown et al. 2009). Among the studies that did not find any association, both were using rather small study samples and in one case, the outcome was ischemic stroke mortality (Hermansson et al. 2007; Karlsson et al. 2005).

It is possible to assume that shift work may be associated with ischemic stroke. This is supported by the results in Vyas and co-workers (2012) that reported a potential increased risk of 5% for shift workers (Vyas et al. 2012) and systematic review reporting that epidemiological evidence for an association between shift work and ischemic stroke was limited (Jakobsson and Gustavsson 2013). Vyas and
co-workers only used the two available studies analysing ischemic stroke and its association to shift work (Brown et al. 2009; Hermansson et al. 2007). By doing so, Vyas and co-workers (2012) excluded the broader definition cerebrovascular disease. This was preferable given that the risk factors associated with ischemic stroke are more similar to the risk factors associated with IHD (O'Donnell et al. 2010). This was supported in a systematic review, where the authors concluded that the possible causal relationship between ischemic stroke and shift work was accentuated by the association between known risk factors for CVD and shift work (Jakobsson and Gustavsson 2013).

One circumstance that could have influenced the results in paper I was the fact that average age of a patient with ischemic stroke is 75.6 years (Riksstroke 2015), and most of the participants included in the analyses were under that age. Because the official retirement age in Sweden is 65 years, it would be possible to assume that the incidence would have been higher if the age span had been greater. However, in an analysis considering that possibility, the shift work variable would lose some of its validity because most of the participants would be retired and therefore no longer directly exposed to shift work.

To summarise, shift work may be associated with ischemic stroke but the excess risk is small. This is probably explained by the fact that ischemic stroke often occur in persons older than what MI do.

Shift work and case fatality (paper II)

The results from paper II showed an increased risk of death within 28 days after MI for male shift workers. When adjusting for selected covariates in different regression models, the OR changed marginally. No such risk increase was found for female shift workers.
After adjusting for physical inactivity, the OR decreased slightly for male shift workers. This result may be explained by the fact that the prevalence of physical inactivity was higher among shift workers. Adjusting for current tobacco smoking, BMI ≥ 28, diabetes type II, socioeconomic status, or job strain did not change the OR largely.

Adjusting for high blood pressure for male shift workers gave the most marked increase in OR for case fatality for male shift workers. Elevated blood lipids (cholesterol and triglycerides) and high blood pressure were not assessed in this analysis due to lack of such data for cases included in the data set.

The result that female shift workers not had an increased risk for case fatality compared with female day workers needs to be elaborated in future studies. The labour market is gender segregated in Sweden with more women in, e.g. the health care sector and more men in, e.g. the transport sector (Statistics Sweden 2012), and that means that the working situation for women and men in shift work compared with day work could be different. Paper II reports a case fatality among male shift workers of 21.2 % and male day workers of 14.3 %. For females, the corresponding case fatality for shift workers was 13 % and for day workers 21.2 %. Male shift workers and female day workers in this study have relatively similar case fatality compared to other Swedish reports, while the case fatality for male day workers and female shift workers are lower in comparison (Rosengren et al. 2001). The low case fatality for female shift workers may be related to a small actual number of fatalities.

From 1978 to 2008, there is a trend in Sweden of decreasing case fatality rates after first time MI, for both men and women (Yang et al. 2012). Repeating this study using a dataset reflecting the working conditions in Sweden 2015, the results would likely indicate lower case fatality rates for both shift workers and day
workers. But, the relative difference in case fatality risk of MI reported for male shift workers compared with male day workers in this study is likely to be relevant as of today even though the absolute risk has decreased.

In the studies analysing CVD-mortality and shift work, there were a few points that need further attention. Given that many of the study populations were different in their composure, e.g. gender, occupational exposure (Vyas et al. 2012), the selected outcome variables e.g. IHD compared to CVD could potentially have contributed to a mixture of positive and negative associations between shift work and CVD-related mortality. Moreover, there is a mixture of exposure comparators and exposure assessments in the previous studies analysing shift work and CVD mortality (Vyas et al. 2012). Some studies compare shift or night workers against the general population or against non-shift or day workers. When assessing the risks attributable to shift work, it is likely that day workers are the preferred comparator, for example because their working status will be associated with a higher validity.

In the studies investigating CVD mortality among shift workers, the size of the study populations did not seem to affect the outcome results. Another aspect in need of further attention is confounding control. It is vital to control for confounding factors known to be associated with shift work such as tobacco smoking (van Amelsvoort et al. 2006). If not performed, there is a risk of falsely estimating the risk associated with shift work exposure. Moreover, a large quantity of the studies included in the meta-analysis addressed the issue of adjusting their analyses for potential covariates when so possible, indicating an understanding of their potential effects on the outcome (Vyas et al. 2012). The same study also reported that shift work was not associated with increased rates of all-cause or vascular specific mortality (Vyas et al. 2012).
If, as in the case in paper II for male shift workers, case fatality of MI is elevated, it is likely to have some effect on their total mortality. This will warrant caution of MI cases with shift work exposure, which in turn can reduce the overall CVD mortality and act as a foundation for prevention of case fatality.

Shift work and risk factor interaction (paper III)

The results of paper III showed that shift work and physical inactivity interacted for males, and high WHR or elevated triglycerides interacted with shift work for females and their risk of MI.

The results indicate that the negative consequences of physical inactivity may be more hazardous for male shift workers compared to male day workers regarding the risk of MI. It has been previously reported that leisure-time physical activity is associated with decreased risk of CVD (Li and Siegrist 2012) and lower prevalence of for example high blood pressure (Huai et al. 2013) and dyslipidaemia (Mann et al. 2014). Several mediating mechanisms by which physical activity is supposed to affect the risk of CVD have been proposed, such as raised HDL-cholesterol levels and thereby likely decreasing low density lipoprotein (LDL) cholesterol and triglycerides (Li and Siegrist 2012), improved insulin sensitivity (Mann et al. 2014), and thereby decreasing the risk of diabetes type II. Regular physical activity lowers C-reactive protein (CRP) levels and reduces inflammation (Holtermann et al. 2012) and thereby decreasing the risk of CVD. Some of the inflammatory lowering effect may be mediated by the lower body weight associated with regular exercise, as obesity and adipose tissue increase the inflammatory processes in the body. Thereby, an increase in physical activity for male shift workers may decrease their risk of MI. Promoting healthy life style choices among shift workers, such as decreased tobacco smoking, will also have other positive health effects.
High WHR and elevated triglycerides interacted with shift work among women, on the association with MI. It appears that these risk factors for MI are more harmful to female shift workers compared to day workers. Higher prevalence of high WHR among male shift workers has previously been reported (Nakamura et al. 1997). High WHR can indicate visceral adipose tissue that in turn is also a component in the metabolic syndrome and associated with increased risk of CVD (Grundy et al. 2004), and the metabolic syndrome is associated with shift work (F. Wang et al. 2014). High WHR and elevated triglycerides have also been shown to be associated with increased risk of MI and all-cause mortality among women (Lindquist et al. 2002; Lindqvist et al. 2006). The effects of elevated triglycerides for older women have been suggested to be associated with increased triglyceride rich LDL, that may have atherosclerotic effects. This could be related to a underlying age-related decrease in lipid metabolism (Lindquist et al. 2002). There is a need for further research to understand if there is an interaction between shift work and an age-related decrease in lipid metabolism among women.

Promoting physical activity among shift working women would potentially decrease their risk of CVD by reducing their visceral adipose tissue (Vissers et al. 2013). Triglyceride levels is likely to also be decreased via increased physical activity (Li and Siegrist 2012). Such efforts may counteract the interactions reported in this study for female shift workers. However, both male and female shift workers had a higher prevalence of diabetes type II than day workers did. But there were no interaction with shift work on the association with the risk of MI found in the analyses.

In a previous analysis of interactions between shift work and CHD, Tenkanen and colleagues (1998) used a sample of males employed within manufacturing industries. They reported that shift work together with cigarette smoking or high
BMI interacted on the risk of CHD (Tenkanen et al. 1998). They did not come to similar results regarding those risk factors. The methods for interaction assessment differ, they reported the RR of each of the four exposure scenarios, but did not calculate SI or similar outcome measure. Thereby, they did not analyse interaction as a departure from additivity. Excluding women and other types of shift work related occupations made their findings less representative of shift workers in general. Virkkunen and co-workers (2006) did not study any of the same included risk factors as in paper III (Virkkunen et al. 2006).

The labour market in Sweden is gender segregated. More women are employed in, e.g. the health care sector and more men in e.g. the transport sector, creating differences in work related exposures (StatisticsSweden. 2012). This may have affected the results in paper III, if male shift workers are exposed to for example toxic exposures and female shift workers to psychosocial stressors.

In the existing literature, only a limited number of studies have analysed interactions for shift work with other risk factors and the risk of MI. Therefore, more research in the field is needed. It might be that traditional risk factors are more hazardous for shift workers. If this is the case, ordinary confounder control such as stratification or logistic regression analysis without the use of interaction terms would not be enough to control for the traditional risk factors, and uneven distribution between cases and controls of risk factors would therefore not be sufficiently accounted for.

For further studies of interaction between shift work and the risk of CHD, it would be of interest for example to study indicators of vascular specific inflammation (Rudolf and Lewandrowski 2014). That could bring more understanding to the causes behind the association between shift work and CVD. If vascular inflammation and, for example physical inactivity, interacts with shift work, the
need for effective preventive measures would be even more highlighted given the potential increased risks of CHD.

In summary, paper III showed an interaction between shift work and physical inactivity and an increased association with risk of MI for males. Interactions were found for females between shift work and elevated triglycerides, WHR and an increased association with the risk of MI, indicating that these risk factors may be more harmful to male and female shift workers. The reported interactions suggest that focus on prevention among shift workers should aim at promoting physical activity and healthy lifestyle choices in general.

Shift work and heredity (paper IV)

The results of paper IV showed an interaction between paternal history of MI or SCD and shift work for males and the risk of MI. No other similar studies were found.

Previous studies have shown that parental history of CVD is an independent risk factor for CVD outcomes (Weijmans et al. 2015). Different mechanisms for this association have been discussed, parental history of CVD accumulate both known and unidentified environmental and heritable risk factors in a specific family (de Goma et al. 2012). It has also been proposed that parental history of premature CVD accelerates accumulation of coronary artery calcium (Pandey et al. 2014).

The result of this study may not only be a result of biological inheritance. Factors related to sedentary lifestyle such as obesity have been shown to proceed from generation to generation (Whitaker et al. 1997) the same has been shown to some extent for type of occupation (van de Mheen et al. 1998). An increased biological predisposition for MI and the inheritance of sedentary lifestyle may explain the findings. Therefore, it may also be of interest to extend further analyses to
comprehend parental MI or SCD, in not only biological parents and potential interactions with shift work and the risk of CVD. There are findings showing an added value of extending the term ‘family history of CVD’ to comprehend factors such as age at onset of disease, type of family relationship and the number of affected relatives (van Daele et al. 2013). So-called early life events, exposures during infancy and childhood, may also play a role in our findings. A review from 2008 concluded that birth weight as an indicator of fetal nutrition has a U-shaped risk for the development of metabolic disease later in life (Gluckman et al. 2008).

Socioeconomic status in childhood is often directly related to the socioeconomic status of the parents. Childhood socioeconomic status has been associated with poorer adult health and health related behaviour (van de Mheen et al. 1998). Early life events and childhood socioeconomic status may interact with parental history of CHD. Such interactions could hold part of the explanation behind the results in this study.

A family history of diabetes among shift workers has been associated with an increased risk for the offspring to develop diabetes (Kawakami et al. 1999), showing that shift workers are at risk of getting the same health problems as their parents. Altogether, this would make an interesting aim for future studies that could bring understanding to the potential interplay between genetic factors and behavioural patterns leading up to increased risk of CHD.

No interaction between shift work and premature MI or SCD was found. Premature occurrence is often viewed as a vital component of the familial aggregation of CVD risks (Pandey et al. 2014).

Analysis of interactions between parental history of MI and SCD for females was excluded from this study due insufficient number of females in the study.
population. In order to analyse potential interactions between parental history of MI or SCD and shift work for females, larger study materials are needed.

To extend the hypothesis regarding interaction between parental MI or SCD and shift work, it would be interesting to conduct studies of interaction between parental incidence of a wider spectrum of CVD such as different forms of stroke (Seshadri et al. 2010), and also metabolic diseases like diabetes type II (Wikner et al. 2013). Such studies could further elucidate whether there are genetic- and environmental risks interacting to increase the risk of MI for shift workers. It would also be of interest to study familial clustering of CVD, extending from parental CVD to include also CVD among siblings (Nielsen et al. 2013) and potential interactions with shift work. Such studies may also help to shed light on if there are specific interactions attributed to CVD occurring in the same generation and shift work. Studying interactions between parental history of CVD and shift work, as in paper IV, helps to show that the association between shift work and CVD is likely to be affected also by this risk factor.

To summarise; the findings in this paper show that there is an interaction between paternal MI or SCD and shift work on the risk of MI. These findings may have clinical implication for occupational health workers when assessing the future risk of MI for shift workers; paternal history of MI or SCD needs to be taken into account. By doing so, they will increase the possibility of finding employees with increased risk of MI. More research is needed to clarify potential interaction between shift work and parental history of MI or SCD.
Study design considerations

All papers were based on case-control studies, conducted by well-established research organisations, thereby accounting for presumably good data quality and thereby positively affecting the precision in the results.

Questionnaire data

There is a potential risk of misclassification, in study II, III and IV, related to the use of questionnaire data for fatal cases submitted by a close relative, primarily due to recall bias. This fact might influence the result to some extent, but the level of impact on the results remains hypothetical. Study I was based on a nested case-control study where the outcome was unknown at the time of data collection.

Questionnaire data is subject to bias, both in the actual reporting from the respondent but also in so-called healthy worker survivor bias. Respondents who reported having day work might in fact be former shift workers and vice versa. There is also a risk of respondents having trouble in determining their working conditions correctly. This may lead to an underestimation of the risk associated with shift work exposure. Information about shift work or day work was based on questionnaire data, concerning the last five years of their working life. The questionnaire data regarding shift work exposure used in the SHEEP/VEEP study and the definition of shift- and day work derived from that question has been used in previous studies (Knutsson et al. 1999). It has been proposed that questionnaire data on shift work would not be subject to much recall bias (Kolstad 2008).

Healthy worker survivor bias is defined as the trend of unhealthy individuals leaving, for example shift work, earlier, and thereby receiving less exposure, in this case to shift work. This is likely to create a scenario were participants that remain in shift work may be less prone to different forms of diseases. Several methods have been suggested for controlling study outcomes for healthy worker survivor
bias, one being cohort restriction. Cohort restriction means that the exposure in question must have been present for a specified period, which was the case in papers I-IV (Buckley et al. 2015). Lifetime exposure to shift work is not possible to derive from the data, which represents a limitation.

In addition, there may be a need to further development in the granularity of the shift work exposure when derived from questionnaire data. By just using a one-dimensional shift work variable, the information about the length of shift work exposure will not be included. That may underestimate a potential dose-response effect in the length of shift work exposure.

Data on parental history of MI or SCD was also collected from questionnaire data. SCD was intended as a proxy for mortality related to a number of CVD associated with SCD, but may be subject to bias relating to the level of medical knowledge of the respondent, or to the age of the respondent at the time of the parents passing. At young age, the risk of misunderstanding the actual diagnosis that caused the mortality may be decreased, and if the event occurred at young age, the risk of recall bias increases if the questionnaire was completed later in life. Validation of such questionnaire data via the use of registries has been performed confirming the reliability of questionnaire data when analysing the association between parental MI increases the risk of MI in offspring (Nielsen et al. 2013).

Clinical data
In the papers in this thesis, two definitions of high blood pressure are used, ≥ 140 mmHg/≥ 90 mmHg or ≥ 170 mmHg/≥ 95 mmHg. This is primarily related to a change in the diagnostic cut-off level for high blood pressure over time. In the SHEEP/VHEEP study, initiated prior to the MONICA study, the cut-off level was higher. By using the low cut-off level, the effects of high blood pressure may have been attenuated by inclusion of participants with slightly elevated blood pressure,
thereby risking undervaluing the association between shift work and ischemic stroke. This scenario was relevant for paper II to IV.

Overweight was addressed as BMI ≥ 28. Even with the general acceptance of measuring overweight BMI > 25 (WHO 1995), there are findings showing that a BMI of somewhere between 25 to 28 may be associated with lower mortality compared to both higher and lower BMI for young women (Lindqvist et al. 2006). The cut-off levels have been questioned in relation to how the category of BMI between 25 to 30 predicts increased mortality for both males and females (McGee 2005). In old age, overweight and even obesity may have a protective effect on mortality, sometimes referred to as the obesity paradox. This may be related to the fact that this group is made up of individuals with different weight history. The group with the worst prognosis is those who were overweight as middle-aged and decreased their weight later in life (Strandberg et al. 2009). Thereby, using a BMI of 25 to 30 is rather complex in studies analysing mortality.

WHR has also been reported to be a better discriminant of cardiovascular risk factors than BMI (C. Lee et al. 2008). Even so, overweight is associated with CVD (Bogers et al. 2007) making a combination of BMI and WHR preferable when studying incidence of MI.

Given the association between shift work and the metabolic syndrome, supported in a number of studies, for example in a meta-analysis (F. Wang et al. 2014), it is vital to conduct further studies to gain more understanding of associations and interactions in this field. When doing so, high WHR in combination with a BMI ≥ 28 may be preferable to characterize overweight and obesity among shift workers.

It is vital, when conducting studies on the association between shift work and CVD on both males and females, to include both cholesterol and triglycerides given the
previously described gender/sex differences (Lapidus et al. 1985; Lindquist et al. 2002; Wilhelmsen et al. 1973). Future studies on blood lipids among shift workers may shed light on potential interaction effects that could explain associations between shift work and atherosclerosis (Haupt et al. 2008).

Interaction analysis
A number of epidemiologists have argued that so called biologic interaction should be assessed on an additive scale as in paper III and paper IV (Andersson et al. 2005; Hallqvist et al. 1996). The term biological interaction assumes some understanding of the underlying biological process behind the results; therefore, the term should be used with some caution. Interaction can be assessed both on an additive scale and on a multiplicative scale. The values for A_1B_1, A_1B_0, and A_0B_1 are provided in the results of paper III and paper IV so that the reader using the following formula can assess multiplicative interaction:

$$A_1B_1 = A_1B_0 \times A_0B_1$$

Multiplicative interaction is considered when:

$$A_1B_0 \times A_0B_1 < A_1B_1$$

Compared to additive interaction, multiplicative interaction does not consider the unexposed reference category (A_0B_0) and can provide results showing a higher interaction compared to the results from additive interaction calculated on the same data (Ahlbom and Alfredsson 2005).

A previous simulation study has questioned the use of measures of additive interaction calculated by substituting OR in place of RR reporting that they may not be reliable (Kalilani and Atashili 2006). OR only approximate the RR. When the
OR is more than 1, odds ratio tends to overestimate the RR (Davies et al. 1998). When analysing interaction between two risk factors using OR and using the RERI or SI, caution should be applied in conclusions about interactions, especially in studies with common outcomes. It has been shown that AP is likely to be more robust to when using OR in place of RR in interaction analyses (Kalilani and Atashili 2006). When analysing additive interaction and adjusting for covariates, SI has been proven to be more stable given that it does not vary across strata of the additional covariates (Skrondal 2003). It has been suggested that AP, SI and, RERI should be used when assessing additive interaction (Kalilani and Atashili 2006).

Confounding control was not addressed further in paper III and IV than age adjustment. Given that the potential interactions between confounders in relation to shift work and CVD are sparsely studied, the choice of potential confounders in interaction analyses is an area where further research is needed.

Sex/gender in studies on shift work
Many of the studies analysing associations between shift work and CVD, have been performed on male subjects, creating uncertainties to whether the associations found in the studies are applicable to females. It has been shown that established risk factors for CVD are associated with a higher relative risk for females than males (Reuterwall et al. 1999), further studies could show if the same results apply for shift work as a risk factor. In this thesis, females have been analysed in papers I to III, in paper IV females were excluded due to insufficient number of participants eligible for analysis.

Sample size in studies on shift work
A number of the cohort studies on the association between shift work and CVD have been performed on rather small cohorts, around 300 to 600 participants, this applies especially to older studies (Bertuzzi et al. 2003; Knutsson et al. 1986; Koller 1983; Rafnsson and Gunnarsdóttir 1990). The results in such studies could be
underpowered. In comparison, there are a number of cohort studies on the association between shift work and CVD that have been performed on large study materials (over 20,000 participants) (Alfredsson et al. 1985; Brown et al. 2009; Kawachi et al. 1995). The result from such studies are less likely to be underpowered and thereby of greater generalisability in comparison to smaller studies. Paper I and paper IV were performed on rather small data materials. Paper II and paper III were performed on data materials including 1,500 participants.

Interpretation and implications

Shift work was not associated with an increased risk of ischemic stroke. Thereby, it is likely to assume that the association between CVD and shift work is less associated with ischemic stroke and more with CHD. This is supported by the increased risk of ischemic stroke of 5% for shift workers reported in a recent meta-analysis (Vyas et al. 2012), and by the fact that ischemic stroke in general occurs later in life (Riksstroke 2015).

Exposure to shift work is associated with increased risk of death within 28 days after MI for male shift workers. This finding may warrant increased caution of male shift workers treated in hospital with MI. This may call for more life style preventive measures to counteract sedentary life style among shift workers. Such efforts may decrease suffering, MI mortality, and result in health improvements.

Shift work interacts with CVD risk factors such as physical inactivity, high WHR, high triglycerides, and paternal history of MI or SCD. This indicates that these risk factors may be more hazardous to shift workers.
Given that shift work is common and increasing in prevalence in the modern society, efforts in primary and secondary prevention aimed at improving health and preventing disease among shift workers is of major societal concern.

Need for further study
The findings of this thesis bring further understanding of the association between shift work and CVD. However, much remains to be investigated, and future research priorities may include:

- Prospective cohort studies of shift workers and non-shift workers with clarified disease end-points, to bring more light on the association between shift work and CVD.

- Most of the studies conducted on shift work have been performed on a limited number of occupational groups; thereby research on a wider variety of occupational groups is needed.

- More research is needed on female shift workers, both in order to clarify how shift work affects females and to create the possibility of assessing gender differences in risks associated with shift work.

- More research on potential biological mechanisms such as circadian disruption, sleep deprivation, and HRV is needed. This would bring more understanding to the association between shift work and CVD, especially with a focus on the association between shift work and the development of atherosclerosis.
• A more granular assessment of shift work exposure may improve the precision in the results; the same goes for a harmonisation of the analysed CVD outcome variables.

• It would also be of interest to explore whether there is a greater recall bias related to whether one has been exposed to shift work or night work.

• Given the association between shift work and CVD, it would be interesting to include shift work in risk assessment models such as the Framingham risk score for CVD.
CONCLUSION

In summary, the findings did not indicate a higher risk of shift workers developing ischemic stroke compared to day workers.

Male shift workers had an increased risk for case fatality within 28 days after MI; such results were not found for female shift workers.

Shift work interacts with some CVD risk factors indicating that the association between MI and shift work may in part be attributed to interactions between risk factors and shift work. This could mean that the specific risk factors are more harmful to shift workers compared to day workers.

The findings in this thesis bring further strength to the association between shift work and CVD, MI specifically. However, more research is needed to clarify and characterise these results.
ACKNOWLEDGMENTS

I would like to thank my two main supervisors, professor Anders Knutsson, professor Katja Gillander Gädin, and my co-supervisor associate professor Berndt Karlsson, to whom without this thesis never would have written or completed. They have in every way possible shared their deep knowledge within the field of epidemiology, shift work, and health.

In addition, I would like to thank Göran Fahlén, Hans Goine, and Maria Nordin for stimulating conversations during our meetings within the research group. Also, I would like to thank my co-workers and friends, such as Bengt Wramner, May Blom, Stefan, Anna and Daniel, Thomas and Loo-Anna. The same goes for the rest of my family in Olof, Lena, Kristian, Henrik, and to Gunilla and Fredrik.

Most importantly, I have to express my deepest gratitude to my fiancé and “fourth supervisor” Jeannette Olsson, for her everlasting support and devotion. Finally, Max, the embodiment of a bundle of joy.
REFERENCES

Alberti, K., et al. (2009), 'Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International', Circulation, 120, 1640-5.

Bogers, R. P., et al. (2007), 'Association of overweight with increased risk of coronary heart disease partly independent of blood pressure and cholesterol levels: a meta-analysis of 21 cohort studies including more than 300 000 persons', Arch Intern Med, 167 (16), 1720-8.

Bøggild, H., et al. (1999), 'Shift work, social class, and ischaemic heart disease in middle aged and elderly men; a 22 year follow up in the Copenhagen Male Study', Occup Environ Med, 56 (9), 640-5.

Falger, PR. and Schouten, EG. (1992), 'Exhaustion, psychological stressors in the work environment and acute myocardial infarction in men', J Psychosom Res, 36 (8), 777-86.

Gholami-Fesharaki, M., et al. (2014), 'Multicenter historical cohort study of the relationship between shift work and blood pressure', ARYA Atheroscler, 10 (6), 287-91.

Kawachi, I., et al. (1995), 'Prospective study of shift work and risk of coronary heart disease in women', Circulation, 92 (11), 3178-82.

Lundberg, M., et al. (1996), 'A SAS program calculating three measures of interaction with confidence intervals', Epidemiology, 7 (6), 655-6.

McMurray, J. J., et al. (2012), 'ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology', Eur Heart J, 33 (14), 1787-847.

Nagaya, T., et al. (2002), 'Markers of insulin resistance in day and shift workers aged 30-59 years', Int Arch Occup Environ Health, 75 (8), 562-68.

--- (2015a), 'Socialstyrelsens statistikdatabas'.

<http://www.socialstyrelsen.se/statistik/statistikdatabas/dodsorsaker>

Wang, T. J. (2008), 'New cardiovascular risk factors exist, but are they clinically useful?’, *Eur Heart J*, 29 (4), 441-4.

Violanti, J., et al. (2009), 'Atypical work hours and metabolic syndrome among police officers', Arch Environ Occup Health, 64 (3), 194-201.

Virkkunen, H., et al. (2006), 'The triad of shift work, occupational noise, and physical workload and risk of coronary heart disease', Occup Environ Med, 63 (6), 378-86.

Yong, M., et al. (2014), 'Shift work and risk of non-cancer mortality in a cohort of German male chemical workers', Int Arch Occup Environ Health, 87 (7), 763-73.

Åkerstedt, T. and Wright, K. (2009), 'Sleep loss and fatigue in shift work and shift work disorder', Sleep Med Clin, 1,4 (2), 257-71.

Paper I
Ischemic stroke and shift work
by Jonas Hermansson MSc,1 Katja Gillander Gådin, PhD,1 Berndt Karlsson, MD,2 Bernt Lindahl, MD,2 Birgitta Stegmayr, PhD,3 Anders Knutsson, MD 1

Objectives This study analyzed the potential association between shift work and ischemic stroke.

Methods The analysis was carried out using a nested case–control study consisting of 138 shift workers and 469 day workers from the register of the Northern Sweden Monitoring of Trends and Determinants in Cardiovascular Diseases (MONICA) study and the Västerbotten Intervention Programme. Logistic regression analysis was used to analyze the risk estimate for day workers in a comparison with shift workers and the risk of ischemic stroke.

Results The crude odds ratio for the shift workers’ risk of experiencing an ischemic stroke was 1.0 (95% confidence interval 0.6–1.8) for both the men and the women. The risk estimates were consistent despite the introduction of several recognized risk factors for ischemic stroke in the logistic regression models.

Conclusions In the present study, none of the findings indicated a higher risk of shift workers undergoing an ischemic stroke than day workers.

Key terms cardiovascular disease; case–control study; epidemiology; risk factor.

Shift work has been found to be associated with health consequences such as fatigue, sleep disturbance, and gastrointestinal malfunction. Strong evidence has also linked shift work with compromised pregnancy outcome (1). Shift workers also demonstrate up to a 40% higher risk of myocardial infarction than that of day workers (2). The cause of this increased risk has not yet been clarified in detail. Most of the research on cardiovascular disease among shift workers has focused on the risk of developing myocardial infarction, despite the similarities in risk factors between myocardial infarction and ischemic stroke, for example, smoking and high blood pressure (3). Only a few studies have analyzed the potential association between shift work and stroke, with inconsistent results (4, 5). Karlsson et al (4) did not find any statistically significant difference between shift and day workers in a Swedish study cohort, while Virtanen & Notkola (5) found shift work to be the most influential factor with respect to the risk for cerebrovascular deaths in a Finnish cohort.

The aim of this study was to analyze the potential association between shift work and ischemic stroke.

Study population and methods

Study population

This nested case–control study was formed by combining two population-based health surveys, the Northern Sweden Monitoring of Trends and Determinants in Cardiovascular Diseases (MONICA) study and the Västerbotten Intervention Programme (VIP).

The MONICA study started in 1985 in two counties in northern Sweden, Västerbotten and Norrbotten. In general, 250 randomly selected persons of each gender and age group (25–34, 35–44, 45–54, 55–64, and 65–74 years) were invited to participate in health surveys in 1986, 1990, 1994, 1999, and 2004. The oldest age group was only invited to the last three surveys (6). The average participation rate in the five health surveys was 77.2%.

VIP is an ongoing intervention program focusing on cardiovascular disease and diabetes prevention in Västerbotten County. Participants are asked to take part in a health survey, comparable to the MONICA population...
surveys, at their primary health care center when they turn 30, 40, 50, and 60 years of age (7). The overall participation rate for VIP has been 60%. The assessment of social characteristics between the participants and nonparticipants has shown little evidence of selection bias (8). Between 1 January 1985 and 31 September 2000, about 66,300 individuals had participated in the VIP and MONICA health surveys.

Event registration and case finding. The registration of acute stroke events started in 1 January 1985. Case findings were based on reports from hospitals and general practitioners and on the screening of hospital discharge registers and all death certificates. For both counties, the registration of stroke events was carried out at the Umeå University Hospital. The diagnosis of stroke events was based solely on clinical presentation. In fatal cases, the data from death certificates and from necropsy reports were used to complete the diagnosis (6). Only the cases that occurred after the health survey were included.

The case findings of fatal stroke events cover the following death certificate diagnoses: cerebrovascular disorders, atherosclerosis, multi-infarct dementia, and sudden death appearing as the immediate, underlying, or contributing cause of death. Medical documentation was collected and checked against the World Health Organization (WHO) MONICA stroke criteria (9). All general practitioners in the area were requested to report nonhospitalized cases. Annually, computer-based lists of discharge diagnoses from acute-care hospitals and nursing homes were screened for additional cases.

Stroke was defined according to the WHO criteria as “rapidly developing clinical signs of focal (or global) disturbance of cerebral function lasting more than 24 hours (unless interrupted by surgery or death), with no apparent cause other than a vascular origin” (9, 10). All cases of acute stroke in the age range of 25 through 74 years were included from 1985 onwards.

Brain lesions discovered by computed tomography (CT) but not accompanied by acute focal signs were not accepted as stroke cases, nor were extradural and subdural hemorrhages. Stroke cases associated with a brain tumor, trauma, or severe blood disorders or subdural hemorrhage were also excluded.

In this paper, only ischemic stroke has been included. The diagnosis of ischemic stroke, according to the MONICA manual, was based on the definition from the International Classification of Diseases, ninth revision (ICD-9 code in parentheses) as follows: brain infarction or ischemic stroke (ICD 434) and no signs of hemorrhage in a CT scan or at necropsy.

Only cases classified as definite events were included as nonfatal cases. In fatal events, possible infarction and unclassified infarction were included (11).

Controls. For each case, five matched controls without known cardiovascular disease and cancer were selected from the MONICA and VIP cohorts. Matching was done according to gender, age (±2 years), type (MONICA or VIP), and date (±1 year) of the health survey, and geographic area. Each control received a questionnaire with items on any cardiovascular event that had occurred since the baseline survey. As a first choice, the first two of the controls selected were used in the analyses. If neither of them responded, the third (or occasionally the fourth) control selected was used. The Research Ethics Committee of Umeå University, Umeå, and the data-handling procedures by the National Computer Data Inspection Board, Stockholm, Sweden, approved the study protocol.

Number of day workers and shift workers in the analysis. The material consisted of 834 respondents (table 1), 138 shift workers and 469 day workers. Because of the lack of information about worktimes, 227 respondents were excluded from the analysis. This analysis was only performed for ischemic stroke and included 194 cases, of which 44 cases were exposed to shift work.

Health examination

Every person selected for participation was invited to a health examination at the nearest health care center, where risk factors such as body mass index (BMI), fasting glucose, blood pressure, total serum cholesterol, and triglyceride levels were examined. The participants were also asked to complete a questionnaire that included, for example, questions about marital status, tobacco habits, educational level, work conditions, and previously known cardiovascular disease.

Exposure information

The exposure characteristics of the day and shift workers are presented in table 2.

Shift work. In our study, the shiftwork variable was based on the responses to two questions from the population surveys, since the question regarding workhours was not
consistent in all the surveys. One question was from the VIP study ["Do you have shift work or weekend work? yes (a) or no (b)"], and the other question came from the MONICA study ["What are your normal workhours? Regular workhours (a), shift work (b), variable workhours (c) and I am not gainfully employed (d)"]. The respondents who answered “a” to the first question and those who responded “b” or “c” to the second question were regarded as shift workers and coded 1. The others were considered not shift workers and were coded 0.

Smoking. The alternatives regarding tobacco smoking habits were daily smoker (a), former daily smoker (b), and nonsmoker and occasional smoker (c). Nonsmokers (b and c) were coded 0, and smokers (a) were coded 1.

Job strain. The concept of job strain was introduced in 1979 (12). In this study, the demand–control model was used. Job strain was measured using a short version of the questionnaire in Swedish (13). It had five questions about psychological demands and six questions about decision latitude, each with four graded responses ranging from 1=never to 4=always or almost always. The work experience during the last 5 years prior to inclusion in the study was considered. The variable was based on the individual quota between demand and control. Job strain was considered present for the respondents who were in the upper tertile for the demand questions and the lower tertile for decision latitude. The participants with job strain were coded 1, and the others were coded 0.

Educational level. The educational level of the participants was obtained from the question "What is the highest level of education that you have completed?" The respondents were categorized into two groups consisting of those with compulsory school (9 years) level as their highest educational level and those with more than mandatory education. This group included the upper secondary school, higher education, and vocational training. The variable was coded 0 for higher education and 1 for lower education.

Blood pressure. Blood pressure was recorded with a mercury sphygmomanometer after a 5-minute rest in a sitting position (10). For the participants from the VIP survey whose blood pressure was measured only in the recumbent position, an adjustment was made for blood pressure measurement in a sitting position (14). High blood pressure was identified if a participant had a systolic pressure of ≥140 mmHg or a diastolic pressure of ≥90 mmHg or was on antihypertensive medication. The participants with a blood pressure consistent with this description were coded 1, and those with a systolic blood pressure of <140 mmHg and a diastolic blood pressure of <90 mmHg were coded 0. In the group of participants with high blood pressure, there were 124 who were being medically treated for high blood pressure.

Blood lipids. The total serum cholesterol and triglyceride concentrations were measured using a benchtop analyzer (Reflotron, Boehringer Mannheim GmbH Diagnostica, Mannheim, Germany) at the time of the health survey (VIP) or by an enzymatic method (Boehringer Mannheim GmbH Diagnostica) at a central laboratory (MONICA). These methods have shown a high correlation (15). Plasma samples were obtained from the participants after a minimum of 4 hours of fasting and were thereafter stored in a deep-freeze blood bank at −80° C°. The participants with total serum triglyceride levels of ≥2.3 mmol/l or total serum cholesterol levels of 26.45 mmol/l were considered at risk for ischemic stroke. Those with a value under the limit were coded 0, and those with a value equal to or over the limit were coded 1.

Statistical methods

For the risk factor variables, the differences were analyzed with chi-square tests. A P-value of <0.05 was considered statistically significant. To determine the risk of shift workers developing ischemic stroke, we calculated the odds ratios (OR) with 95% confidence intervals (95% CI). An unconditional logistic regression model was used since the conditional logistic regression model yielded similar results. The relationship between shift and day work and the outcome of ischemic stroke was assessed in two different models of logistic regression analysis. In model 1 social variables were analyzed, and in model 2 biological variables were analyzed. The data of the men and women were analyzed separately, and both models were adjusted for age. The average age of the participants at the time of inclusion in the study

Table 2. Exposure characteristics (%) of the day and shift workers in this analysis.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Men</th>
<th>P-value</th>
<th>Women</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shift</td>
<td>Day</td>
<td>Shift</td>
<td>Day</td>
</tr>
<tr>
<td></td>
<td>workers (%)</td>
<td>workers (%)</td>
<td>workers (%)</td>
<td>workers (%)</td>
</tr>
<tr>
<td>Job strain</td>
<td>14.8</td>
<td>20.9</td>
<td>35.9</td>
<td>21.0</td>
</tr>
<tr>
<td>Smoking</td>
<td>15.6</td>
<td>15.8</td>
<td>21.2</td>
<td>26.6</td>
</tr>
<tr>
<td>Low education</td>
<td>54</td>
<td>54.2</td>
<td>61.8</td>
<td>60.5</td>
</tr>
<tr>
<td>High serum triglycerides</td>
<td>28.5</td>
<td>18.5</td>
<td>5.0</td>
<td>6.2</td>
</tr>
<tr>
<td>High serum total cholesterol</td>
<td>43.1</td>
<td>36.6</td>
<td>50</td>
<td>40.7</td>
</tr>
<tr>
<td>High blood pressure</td>
<td>43.8</td>
<td>52.9</td>
<td>57.6</td>
<td>50.8</td>
</tr>
</tbody>
</table>

Hermansson et al
Ischemic stroke and shift work

Table 3. Age-adjusted odds ratios (OR) and 95% confidence intervals (95% CI) for shift work in comparison with day work, with adjustment for different confounding variables—results of the multiple logistic regression analysis.

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR 95% CI</td>
<td>OR 95% CI</td>
</tr>
<tr>
<td>Model 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shiftwork versus daywork</td>
<td>1.0 0.6–1.8</td>
<td>1.0 0.6–1.8</td>
</tr>
<tr>
<td>Shiftwork versus daywork, job strain</td>
<td>1.3 0.7–2.3</td>
<td>1.0 0.5–1.9</td>
</tr>
<tr>
<td>Shiftwork versus daywork, smoking</td>
<td>1.0 0.6–1.8</td>
<td>1.1 0.6–2.0</td>
</tr>
<tr>
<td>Shiftwork versus daywork, low educational level</td>
<td>1.0 0.6–1.9</td>
<td>1.1 0.6–2.0</td>
</tr>
<tr>
<td>Shiftwork versus daywork, job strain, smoking, low educational level</td>
<td>1.2 0.6–2.3</td>
<td>1.0 0.6–2.0</td>
</tr>
<tr>
<td>Model 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shiftwork versus daywork</td>
<td>1.0 0.6–1.8</td>
<td>1.0 0.6–1.8</td>
</tr>
<tr>
<td>Shiftwork versus daywork, high serum triglycerides</td>
<td>1.0 0.5–2.0</td>
<td>1.0 0.5–1.9</td>
</tr>
<tr>
<td>Shiftwork versus daywork, high serum total cholesterol</td>
<td>1.0 0.5–1.8</td>
<td>0.9 0.5–1.6</td>
</tr>
<tr>
<td>Shiftwork versus daywork, high blood pressure</td>
<td>0.9 0.5–1.8</td>
<td>0.6 0.3–1.2</td>
</tr>
<tr>
<td>Shiftwork versus daywork, high serum triglycerides, high serum total cholesterol, high blood pressure</td>
<td>1.1 0.5–2.2</td>
<td>0.9 0.4–1.7</td>
</tr>
</tbody>
</table>

was 54.7 years, ranging from 30 to 74 years. All of the statistical calculations were carried out using SPSS 12.0 (SPSS Inc, Chicago, IL, USA).

Results

No statistically significant differences were found between the day and shift workers regarding smoking, high serum triglycerides, high total serum cholesterol, job strain, or educational level (table 3).

The results of the logistic regression did show small but nonsignificant differences between the day and shift workers with respect to the risk for ischemic stroke. In some cases, the models with social variables showed a slightly increased risk estimate, the highest being recorded for job strain. In the models with biological variables, the odds ratio was consistently around 1, with the exception of that for high blood pressure for women, for whom the odds ratio was 0.6, but not significant.

We tested the logistic models both with age as a continuous variable and with age groups as an indicator variable (results not presented in this analysis), without the results being significantly affected.

Discussion

The findings of this analysis of a prospective nested case–control study showed no elevated risk for shift workers developing ischemic stroke when they were compared with day workers. The findings are in accordance with those of Karlsson et al (4), and they contradict those of Virtanen & Notkola (5). Both Karlsson et al (4) and Virtanen & Notkola (5) performed their analysis in cohort studies. However, only Virtanen & Notkola included women in their cohort, but their analysis included only blue-collar workers. Nevertheless, Virtanen & Notkola found a significant excess risk of cerebrovascular death for men working two shifts or evening shifts (relative risk of 1.19) but not for three-shift or night workers. Interestingly, they only found an increased risk for cerebrovascular deaths and not for all cardiovascular deaths with respect to shift workers (5). Tuchsen (16) analyzed stroke morbidity for Danish drivers. He did not make any specific analyses regarding the effects of shift work but claimed that there may be a possible connection between stroke and shift work. Since the diagnosis of stroke events for this study was based solely on clinical presentation, and it was done in accordance with the MONICA protocol, the risk of misclassifying stroke events was probably low.

People that moved out of the northern Sweden MONICA region during the study period were not included in the material and therefore represented a potential loss of cases. We did not find any reason to expect that those who moved out of the region during the period would have had characteristics that differed from those who remained. Therefore, we did not think that this exclusion affected the results in any significant way. Altogether 124 of the participants with diagnosed hypertension received medication for their diagnosis. It was not possible to determine whether this use of medication had any effect on the risk estimate when hypertension was controlled for.

The definition of shift workers in this study was based on data from a single point in time, an average of 5 years before the event. When a definition is based on such data, there is a potential risk of misclassifying workhour exposure. Those who responded that they had day work may in fact be former shift workers and vice versa. Too, there could have been a risk of respondents having trouble in correctly determining their work conditions. Both the risk of misclassification regarding the answers and the fact that the questions used did not take into account the time period during which the present work conditions existed may have led to an underestimation of the risk of shift work itself. Therefore, a shift worker at the time of the questionnaire could in fact have been a day worker up until that day or vice versa (17). This transition increases with age in the direction from shift work to day work.

One finding of this analysis worth mentioning was the relatively small difference between shift workers and day workers regarding the difference in analyzed
risk factors. Normally, shift workers have a higher prevalence of such risk factors even though it is not a consistent finding in the literature (2).

Another circumstance that could have influenced the results was the fact that this analysis mainly consisted of people under the age of 65 years, since about 80% of all cases of ischemic stroke usually occur after 65 years of age. Since the official retirement age in Sweden is 65 years, it would be possible to assume that the incidence would have been higher if the age span had been greater. But, in an analysis considering that possibility, the shift work variable would lose some of its validity since most of the participants would be retired and therefore no longer exposed to shift work.

In summary, the findings of this study did not indicate a higher risk of shift workers developing ischemic stroke when they were compared with day workers. The risk estimate was consistent despite the introduction of several recognized risk factors for ischemic stroke.

References

Received for publication: 18 December 2006
Paper II
Case fatality of myocardial infarction among shift workers

Jonas Hermansson · Katja Gillander Gådin · Berndt Karlsson · Christina Reuterwall · Johan Hallqvist · Anders Knutsson

Abstract

Purpose Shift work has been associated with an excess risk of cardiovascular disease (CVD) and more specifically myocardial infarction (MI). The majority of the studies that found a positive association between shift work and CVD have been based on incidence data. The results from studies on cardiovascular-related mortality among shift workers have shown little or no elevated mortality associated with shift work. None of the previous studies have analysed short-term mortality (case fatality) after MI. Therefore, we investigated whether shift work is associated with increased case fatality after MI compared with day workers.

Methods Data on incident cases with first MI were obtained from case–control study conducted in two geographical sites in Sweden (Stockholm Heart Epidemiology Program and Västernorrland Heart Epidemiology Program), including 1,542 cases (1,147 men and 395 women) of MI with complete working time information and 65 years or younger. Case fatality was defined as death within 28 days of onset of MI. Risk estimates were calculated using logistic regression.

Results The crude odds ratios for case fatality among male shift workers were 1.63 (95 % CI 1.12, 2.38) and 0.56 (95 % CI 0.26, 1.18) for female shift workers compared with day workers. Adjustments for established cardiovascular risk factors such as diabetes type II and socio-economic status did not alter the results.

Conclusion Shift work was associated with increased risk of case fatality among male shift workers after the first MI.

Keywords Cardiovascular disease · Case–control · Shift work · Risk estimation · Epidemiology

Introduction

A growing number of studies from several countries have shown that shift work is associated with an increased risk of coronary heart disease (CHD), especially myocardial infarction (MI) (Fujino et al. 2006; Knutsson 1989; Tenkanen et al. 1997). Numerous hypotheses have been presented in order to explain possible causal mechanisms between shift work and cardiovascular disease (CVD) or CHD. The hypotheses include disruption of the circadian rhythm, sleep deprivation, social stress related to isolation stemming from the divergent working hours, behavioural factors such as smoking, lack of physical activity and poor dietary choices, and low socio-economic status (Bøggild and Knutsson 1999; Frost et al. 2009). Shift work has also been associated with atherosclerosis (Haupt et al. 2008; Puttonen et al. 2009), electrocardiographic changes (Melloni et al. 2013), and arrhythmias (Härenstam et al. 1987).

While the majority of studies that analysed the association between incidence of CVD and shift work was able to confirm such association (Ellingsen et al. 2007; Haupt et al. 2008; Vyas et al. 2012), most studies analysing the association between total mortality of CVD and shift workers have not reported any such association (Bøggild and Knutsson 1999; Frost et al. 2009). The results from these studies suggest that shift work is associated with increased case fatality after MI.
showed myocardial necrosis of an age compatible with two of the criteria a–c to be met, or that necropsy findings and (d) necropsy findings. The diagnosis of MI required dehydrogenase, (c) specified electrocardiographic changes, concentrations of the enzymes creatine kinase and lactate ria of diagnosis included (a) certain symptoms according to Register of Causes of Death at Statistics Sweden. The crite-

same counties, and (c) death certificates from the National Västernorrland, (b) the hospital discharge register for the emergency hospitals within the counties of Stockholm and 28 days after the event. The participants had a mean age of 57.11 (SD 5.77, median 58) years.

Methods

Setting and study design

Cases were defined as all first episodes of non-fatal and fatal events of MI and were collected from a previous case-referent database that consisted of one study in two different geographical areas in Sweden [the Stockholm Heart Epidemiology Programme (SHEEP) and the Västernorrland Heart Epidemiology Program (VHEEP)]. The geographical sites had slightly different periods of case identification and age span of the participants, as described below. The analyses in this study were performed on all available data from the study. The combined study base contained all Swedish citizens living in the counties of Stockholm and Västernorrland, respectively, who were free of previous clinically diagnosed MI. In Stockholm County, all male cases were identified during a 2-year period (1992–1993) and all female cases during a 3-year period (1992–1994). During the period from January to October 1992, the age span was 45–65 years, but from November 1, 1992 and onwards the upper age limit was 70 years. In Västernor-
rland County, the age span was restricted to 45–65 years, and cases were identified during the period between March 1993 and March 1995.

Participants

MI cases were included at the time of disease incidence. They were identified from (a) the coronary and intensive care units at the internal medicine departments at all the emergency hospitals within the counties of Stockholm and Västernorrland, (b) the hospital discharge register for the same counties, and (c) death certificates from the National Register of Causes of Death at Statistics Sweden. The criteria of diagnosis included (a) certain symptoms according to information on case history, (b) specified changes in blood concentrations of the enzymes creatine kinase and lactate dehydrogenase, (c) specified electrocardiographic changes, and (d) necropsy findings. The diagnosis of MI required two of the criteria a–c to be met, or that necropsy findings showed myocardial necrosis of an age compatible with the time of onset of the disease. A group of cardiologists assessed the medical inclusion and exclusion criteria for hospital cases. The same diagnostic criteria were applied for all cases.

Statistics Sweden identified patients who died before admission to hospitals. Among these cases, 72 % were autopsied and had signs of recent MI. For the remaining 28 % of cases in this group, the physician issued the death certificate based on the diagnosis of information on disease history and death circumstances.

All cases were checked for previous hospital admissions for MI from 1971 in the Stockholm heart epidemiology programme and from 1985 in the Västernorrland infarction programme in the hospital discharge register. If such an episode was found, the person was excluded from the study base. Participants with previous infarctions [consistent with diagnosis code 412 in international classification of diseased ninth revision (ICD-9)], as judged from necropsy findings only, were not excluded from the study base. Non-fatal cases answered a questionnaire as soon as possible after recovering. For fatal cases, questionnaire information was obtained from a close relative 3–6 month after the occurrence of MI. The study has previously been described in detail (Reuterwall et al. 1999).

The data in the present study consisted of 1,961 cases of MI, and 1,542 of these cases had complete working time information and were subsequently used in the regression analyses. Among male cases, 18.3 % were shift workers and 81.7 % were day workers (210/937). Among females, the corresponding numbers were 17.5 % and 82.5 % (60/326). Case fatality in this study was the proportion of cases with the first time MI consistent with the previously described diagnostic criteria, which was fatal within 28 days after the event. The participants had a mean age of 57.11 (SD 5.77, median 58) years.

Exposure information

Shift work

Shift work exposure was assessed through the following questions: (1) Did you undertake shift work (during the most recent 5 years of work)? If the answer was yes, the respondent was asked to add information about the type of shift schedule. (2) To reduce the risk of including par-
ticipants that were retired, the age limit for inclusion was set to 65 years, and unemployed or retired cases were excluded. The second question concerned when during the day that the majority of the work hours was scheduled. The response alternatives were (a) 06:00–18:00, (b) 18:00–22:00, (c) 22:00–06:00, (d) a combination of (a) and (b), (e) a combination of (b) and (f), (f) a combination of (a) and (c), and (g) a combination of (a), (b), and (c). If a person
answered yes to question 1 or chose response alternatives b–f to question 2, he or she was regarded as being exposed to shift work (14.2 %). If the respondent answered no to question 1 and did not choose alternatives b–f of question 2, the respondent was regarded as day worker (85.7 %), and only 0.2 % of the respondents were excluded because their answers were not possible to categorise. In total, 270 males and 194 females were excluded based on them being 65 years or older at the time of their MI. None of the excluded cases were over 70 years of age. Shift workers were coded 1, and day workers were coded 0.

Physical inactivity

Respondents that had answered that they never or only occasionally were physically active in their spare time were considered physically inactive, while those who did not meet this criteria were considered physically active and were used as reference.

Tobacco smoking

Smoking habits were divided into current smokers and non-smokers. Current smokers included ex-smokers who had stopped smoking within the last 2 years before inclusion, and non-smokers included ex-smokers quitting more than 2 years ago.

Elevated BMI

Height and weight measures were taken at the physical examination. For those who failed to attend the physical examination, but who had answered the questionnaire (3.8 % of the population with complete BMI data), the reported height and weight were used in order to calculate BMI. A BMI equal to or exceeding 28 kg/m² was considered high.

Diabetes type II

Diabetes type II was considered present if a participant had a level of fasting glucose above 6.7 mmol/L or if the question of known diabetes type II was reported in the questionnaire. It was also considered present if a participant required insulin or if a participant regularly medicated for disease consistent with ICD 9-code 250 or if a participant reported pharmacological treatment against diabetes type II in the questionnaire.

Low socio-economic status

Educational level was used as a proxy variable to estimate socio-economic status. Cases with compulsory school (9 years) as their highest education were considered to have low socio-economic status; participants with higher education were used as reference.

Elevated blood pressure

High blood pressure was considered present if a respondent had either ≥170 mmHg in systolic or ≥95 mmHg in diastolic blood pressure, or reported pharmacological treatment for disease consistent with ICD 9-code 40, or earlier pharmacological treatment for hypertension that ended <5 years before inclusion in the database.

Job strain

Job strain was measured by using a version of the questionnaire in Swedish (Theorell et al. 1988). The questionnaire consisted of five questions about psychological demands and six questions about decision latitude, each question with four response alternatives ranging from 1 = never to 4 = always or almost always. The work experience during the last 5 years before inclusion in the study was considered. The variable was based on the individual quota between demand and control. Job strain was considered present for respondents who were in the upper tertile in the demand questions and the lower tertile in the decision latitude. Participants with job strain were coded 1, and the others were coded 0.

Statistical analysis

All calculations were made separately for men and for women. Case fatality rates (the percentage of fatalities of MI within 28 days after the event) were calculated for shift and day workers. Chi-square analyses were used on dichotomous variables to analyse differences between shift workers and day workers in exposure characteristics, and independent samples t-test were used to analyse differences in average age. A p value of 0.05 or less was considered statistically significant.

Unconditional logistic regression was used since conditional logistic regression produced similar results, to estimate the odds ratio (OR) and 95 % confidence interval (95 % CI), as a measure of shift work’s association on case fatality. Logistic regression analyses were conducted for each exposure characteristic. Included exposure characteristics were physical inactivity, tobacco smoking, elevated BMI, diabetes type II, low socio-economic status, elevated blood pressure, and job strain. Exposure characteristics were selected based on their previous inclusion in studies analysing case fatality of MI (Wannamethee et al. 1995; Yang et al. 2012), and for job strain based on the association with incidence of CHD (Kuper and Marmot 2003).
order to justify the inclusion, given that the area of case fatality of MI and its association with shift work is not well studied, we analysed the relative change in estimated effect size after adjustment of the crude OR for each exposure characteristic on its own (Rothman et al. 2008). This method is known as change-in-estimate or non-collapsibility, and states that a change in relative estimated effect is assessed via the regression coefficient. In our study, changes of the regression coefficient exceeding ±10 % were selected as the cut-off level (Greenland 1989), such change indicates that the exposure characteristics might be a confounder (Rothman et al. 2008). Two different multivariate logistic regression analyses were performed, one with adjustments for biologically related covariates and the other one with behaviourally related covariates. Moreover, the regression analyses were adjusted for age as a continuous variable. The statistical analyses were carried out using SPSS 20.0 for PC.

Results

The case fatality of MI among male shift workers was 21.2 % of 210 cases, compared with 14.3 % of 937 cases among day workers. The case fatality for female shift workers was 13.3 % of 69 cases compared with 21.2 % of 326 cases among female day workers.

Of the included MI cases, 80.7 % were from SHEEP and 19.3 % from VHEEP. Additional analyses comparing case fatality among males against females did not show that male gender was associated with an increased risk of case fatality in general or when comparing male to female shift workers (results not shown). Moreover, additional analyses showed no difference between males and females in age (results not shown).

Table 1 shows that shift workers were more exposed to current smoking, BMI equal to or above 28, low socio-economic status, and job strain for both men and women. Physical inactivity and diagnosed diabetes type II were more prevalent among male shift workers compared with male day workers, but no such difference was seen for women. Female day workers were more exposed to job strain compared with female shift workers. No other differences were found.

Table 2 shows that the crude OR for case fatality following an MI for male shift workers was 1.63 (95 % CI 1.12–2.38). Adjustments for potential risk factors yielded only minor changes in the OR except for low socio-economic status. When combining elevated BMI, diabetes type II, and elevated blood pressure in a multivariate regression model to analyse the associations related to medical risk factors, the OR for male shift workers was 2.17 (95 % CI 1.46–3.23). In the adjustments for elevated blood pressure and the first multivariate adjustment, more day workers than shift workers were included as cases (results not shown).

In the multivariate regression model combining risk factors more directly associated with behavioural and social factors, the OR from male shift workers is relatively constant compared with previous results reported in Table 2. The OR for female shift workers was 0.56 (95 % CI 0.26–1.18). Adjustment for the potential risk factors in both univariate and multivariate regression models did not yield any changes to the results.

Socio-economic status was also analysed using occupational status as a proxy variable comparing blue-collar workers with white-collar workers. The results for both male and female shift workers were similar to the results using educational level as proxy variable (results not shown). Similar regressions as presented here were also performed for the entire data set (including participants over 65 years). The results were similar to the ones presented above with the difference that the OR for males were in general about 20 % lower (results not shown).

In addition, we performed multivariate regression models containing all included covariates and then removing them step-by-step. The OR for shift workers ranged from 1.82 to 1.87 for males and from 0.29 to 0.48 for females. None of the results for female shift workers were significant.

In order to test potential confounder effects, we analysed the change in the regression coefficient in the regression analysis when removing each covariate. No changes over ±10 % in the regression coefficient were noted for male or female shift workers.
Discussion

We found an association between increased risks of case fatality within 28 days after MI among male shift workers. When adjusting for potential confounding variables in different regression models, the OR changed marginally. No such association was found for female shift workers. The low number of female shift workers in the analysis with associated low power issue could partly explain this.

Other studies have identified physical activity as a protective factor against all-cause mortality and CVD mortality (Andersen et al. 2000) and case fatality of MI (Wannamethee et al. 1995). After adjusting for physical inactivity, the OR decreased for male shift workers. This result may be explained by the fact that the prevalence of physical inactivity was higher among male shift workers compared with day workers. No changes in OR were found among women when adjusting for physical inactivity.

Adjusting for current tobacco smoking, BMI ≥28, or diabetes type II did not result in any major change in the OR for shift workers. Socio-economic status has been identified earlier as a risk factor for case fatality (Rosvall et al. 2008; Salomaa et al. 2001). We found that low socio-economic status was more common among male shift workers compared with male day workers. In our study, we found no greater OR changes when adjusting for socio-economic status for increased case fatality for male or female shift workers.

Adjusting for elevated blood pressure for male shift workers gave a marked increase in the OR for case fatality in this study. It is likely that the increase in OR relates to the higher prevalence of elevated blood pressure among fatal day-working cases. Adjusting for job strain did not lead to any OR change for male or female shift workers in the analyses. This is interesting given that job strain was more prevalent among male shift workers and that recent findings have associated job strain with not only increased risk of incident CHD but also with increased inflammatory burden (Emeny et al. 2013). This could have meant that shift workers affected by job strain could also be at greater risk of case fatality after MI, but the results did not support that assumption.

The multivariate regression analyses used to assess the effects of combined risk factors, and their association with case fatality identified an elevated OR for male shift workers and biological risk factors. This was likely related to the higher prevalence of male day workers with the given characteristics. This may be explained by the fact that the included risk factors are associated with a poorer prognosis after an MI.

For further studies of case fatality among shift workers, it would be of interest to study a number of factors that could hold part of the explanation behind the results from this study. For example, if the arteries of shift workers are more affected by atherosclerosis (Haupt et al. 2008), it is likely that this would have weakened the intima of the blood vessel and thereby increasing the risk of rupture and thrombosis occurring when the patient is vulnerable because of the previous MI. Shift work has also been associated with arrhythmias (Härenstam et al. 1987), prolonged QTc interval, and conduction disorders (Meloni et al. 2013), which in turn may indicate a poorer prognosis after a MI. That may also play a role in the increased association between case fatalities of MI for male shift workers reported in this study and would be of interest for further studies.

Table 2 OR of association between case fatalities after first event of MI and shift work for men and women and adjusted for possible confounding

<table>
<thead>
<tr>
<th></th>
<th>Men OR</th>
<th>95% CI</th>
<th>Women OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift work</td>
<td>1.63</td>
<td>1.12, 2.38</td>
<td>0.56</td>
<td>0.26, 1.18</td>
</tr>
<tr>
<td>Shift work, adjusted for physical inactivity</td>
<td>1.54</td>
<td>1.05, 2.27</td>
<td>0.66</td>
<td>0.3, 1.43</td>
</tr>
<tr>
<td>Shift work, adjusted for current smoking</td>
<td>1.65</td>
<td>1.13, 2.41</td>
<td>0.55</td>
<td>0.26, 1.16</td>
</tr>
<tr>
<td>Shift work, adjusted for BMI ≥28</td>
<td>1.59</td>
<td>1.07, 2.38</td>
<td>0.4</td>
<td>0.15, 1.05</td>
</tr>
<tr>
<td>Shift work, adjusted for diabetes type II</td>
<td>1.67</td>
<td>1.14, 2.44</td>
<td>0.57</td>
<td>0.26, 1.2</td>
</tr>
<tr>
<td>Shift work, adjusted for low socio-economic status</td>
<td>1.38</td>
<td>0.82, 2.32</td>
<td>0.31</td>
<td>0.1, 1.05</td>
</tr>
<tr>
<td>Shift work, adjusted for elevated blood pressure</td>
<td>1.82</td>
<td>1.22, 2.7</td>
<td>0.47</td>
<td>0.21, 1.1</td>
</tr>
<tr>
<td>Shift work, adjusted for job strain</td>
<td>1.62</td>
<td>1.1, 2.39</td>
<td>0.41</td>
<td>0.17, 1.0</td>
</tr>
<tr>
<td>Shift work, adjusted for BMI ≥28, diabetes type II, and elevated blood pressure</td>
<td>2.17</td>
<td>1.46, 3.23</td>
<td>0.47</td>
<td>0.18, 1.35</td>
</tr>
<tr>
<td>Shift work, adjusted for physical inactivity, current smoking, low socio-economic status, and job strain</td>
<td>1.65</td>
<td>1.05, 2.6</td>
<td>0.38</td>
<td>0.11, 1.29</td>
</tr>
</tbody>
</table>

Results of age-adjusted logistic regression analysis with 95% CI. A total of 210 male shift workers and 937 male day workers, and 69 female shift workers and 326 female day workers were included in the analysis.
It would also be of interest to perform similar analyses on newer study materials as there are studies showing that case fatality in the general population has declined since the material for this study was gathered (Mannsverk et al. 2012). There are differences in the treatment of modern MI patients compared with the ones included in this study; the amount of patients undergoing revascularisation is higher today, and the same goes for having beta-blockers, aspirin, or statins at discharge from hospital (Mannsverk et al. 2012).

The result that female shift workers not had an increased risk for case fatality compared with female day workers needs to be elaborated in future studies. The labour market is gender segregated in Sweden with more women in, e.g. the health care sector and more men in, e.g. the transport sector (Statistics Sweden 2012), and that means that the working situation for women and men in shift work compared with day work could be different.

This study reports a case fatality among male shift workers of 21.2 % and male day workers of 14.3 %. For females, the corresponding case fatality for shift workers was 13 % and for day workers 21.2 %. Male shift workers and female day workers in this study have relatively similar case fatality compared to other Swedish reports, while the case fatality for male day workers and female shift workers are lower in comparison (Rosengren et al. 2001). We have not found any recently published studies discussing case fatality of MI and shift work. There has been a trend in Sweden of decreasing case fatality rates after first time MI from 1978 to 2008, for both men and women (Yang et al. 2012). If this study would be repeated using a dataset reflecting the working conditions in Sweden 2014, the results would likely indicate lower case fatality rates for both shift workers and day workers. However, this study investigated the relative difference between shift workers and day workers regarding case fatality after MI. Therefore, the relative difference in case fatality risk of MI reported for male shift workers compared with male day workers in this study is likely to be relevant as of today even though the absolute risk has decreased.

As previously noted, many of the studies conducted on the association between CHD mortality and shift work are subjected to results potentially influenced by confounding factors (Frost et al. 2009). As reported in the results of our analysis, we found no results supporting confounding effects of the included covariates in our analysis. The findings of this study show that male shift workers may have an increased risk of case fatality after MI, and this contradicts the findings of the meta-analysis published in 2012 (Vyas et al. 2012). This may be explained by the fact that this study analyses males and females separately, while the meta-analysis did not report gender-specific mortality or case fatality.

Blood cholesterol and triglycerides were not assessed in this analysis due to lack of such data for deceased cases. There is a potential risk of misclassification regarding the use of questionnaire data for deceased cases submitted by a close relative, primarily due to recall bias. This fact might explain our result to some extent, but because no studies were found that discussed gender differences in recall bias or recall bias related to shift work variables reported by relatives, the level of impact on the results remains hypothetical.

Shift work is often defined as a work schedule including work hours outside the daytime schedule. A limitation in epidemiological studies is that the information on shift work exposure is often drawn from questionnaire data (Wang et al. 2011). The questions used to determine that shift work exposure varies from rather generic questions without attempts of determining vital components of the shift work exposure (Costa 2003) to more intricate questions that deal with type of shift work and exposure duration. The questionnaire data regarding working time conditions that formed the basis of the shift work variable in this study and the definition of shift- and day work derived from that question have been used in previous studies (Knutsson et al. 1999). The definition used in this study is lacking information on lifetime exposure to shift work, representing a limitation in this study. The definition of shift work in this study was based on questionnaire data concerning the last 5 years of work. This creates the potential risk of misclassification; there is a risk of respondents having trouble in correctly determining their working conditions. This may perhaps lead to an underestimation or an overestimation of the risk associated with shift work itself, but it has been proposed that questionnaire data on shift work would be less subjected to recall bias (Kolstad 2008).

To our knowledge, this study is the first to analyse the association between case fatality of MI and shift work. Therefore, the findings of this study are to be regarded as preliminary, and more research in the field is needed.

Conclusion

This study shows that male shift workers have an increased association with case fatality after MI. More studies are needed to further clarify whether the same association exists for female shift workers. In all, male shift workers association with increased case fatality after MI should be addressed in preventive efforts in order to decrease suffering.

Conflict of interest The authors declare that they have no conflict of interest.
Paper III
INTERACTION BETWEEN SHIFT WORK AND ESTABLISHED CORONARY RISK FACTORS ON RISK OF MYOCARDIAL INFARCTION.

Jonas Hermansson¹ Henrik Bøggild² Johan Hallqvist³ Berndt Karlsson⁴

Anders Knutsson¹ Tohr Nilsson⁵ Christina Reuterwall⁴ Katja Gillander Gådin¹

¹ Department of Health Sciences, Mid Sweden University, Sundsvall, Sweden.
² Public Health and Epidemiology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
³ Department of Public Health and Caring Sciences, Preventive Medicine, Uppsala University, Uppsala, Sweden.
⁴ Department of Public Health and Clinical Medicine, Occupational Medicine, University of Umeå, Sweden.
⁵ Department of Occupational and Environmental Medicine, Sundsvall Hospital, Sundsvall, Sweden.
ABSTRACT

Objectives Shift work is associated with increased risk of cardiovascular disease, but the causes have not yet been fully established. It has been proposed that risk factors are more hazardous for shift workers, resulting in a potential interaction effect with shift work. The aim of this study was to analyse interaction effects of work schedule and established risk factors for coronary heart disease on the risk of myocardial infarction.

Methods This analysis was conducted in SHEEP/VHEEP, a case-control study conducted in two counties in Sweden, comprising all first time cases of myocardial infarction among men and women 45-70 year of age with controls stratified by sex, age, and hospital catchment area, totalling 4 648 participants. Synergy index (SI) was used as the main outcome analysis method for interaction analysis.

Results There was an interaction effect between shift work and physical inactivity on the risk of myocardial infarction with SI of 2.05 (95% confidence interval (95% CI) 1.07-3.92) for male shift workers. For female shift workers, interaction effects were found with high waist-hip ratio (SI 4.0 (95% CI 1.12-14.28) and elevated triglycerides (SI 5.69 (95% CI 1.67-19.38)).

Conclusions This study found interaction effects between shift work and some established coronary risk factors associated with the risk of myocardial infarction. More research is needed to analyse if these interactions play a role in the association between shift work and myocardial infarction.
Key terms: cardiovascular disease; case-control study; epidemiology; risk factor; work schedule; synergy index.
INTRODUCTION

Several studies have shown that shift work is associated with a higher risk of cardiovascular disease (CVD) when compared to day work (Bøggild and Knutsson 1999), while other studies have found limited (Frost et al. 2009) or partial support (Wang et al. 2011) for such association. A meta-analysis published in 2012 concluded that shift work was associated with an increased risk of myocardial infarction (MI) (risk ratio 1.23, 95% CI 1.15-1.31) and ischemic stroke (risk ratio 1.05, 95% CI 1.01-1.09), both with 0% heterogeneity. That study also reported that shift work was not associated with increased rates of all-cause or vascular specific mortality (Vyas et al. 2012).

Several hypotheses have attempted to explain possible causal mechanisms between shift work and CVD. These include higher prevalence of behavioural risk factors such as smoking, low physical activity and poor dietary choices, low socioeconomic status, adaptation problems of the circadian rhythm, and social stress related to the divergent working hours (Bøggild and Knutsson 1999).

Interaction is related to the situation when parts of the causal effect of an exposure is conditional on the presence of another exposure (Ahlbom and Alfredsson 2005). Interaction analysis using departure from additivity of the risk from each of the risk factors demonstrates interaction when the joint effect of two risk factors is
greater than the sum of the single risk factors. So far, only a few studies have been concerned with studying interaction effects, in some way, of shift work and cardiovascular risk factors and coronary heart disease. One study found that cigarette smoking and high body mass index (BMI) had an interaction effect with shift work and was associated with an increased risk of coronary heart disease for male shift workers (Tenkanen et al. 1998). Another study found that exposure to any two or three of shift work, noise, and physical workload increased the relative risk of coronary heart disease (CHD) (Virkkunen et al. 2006). Both studies assessed the effects of multiple exposures in their analysis; none of them applied measurements of synergy effects. Interaction between shift work and established risk factors for MI is not extensively studied and may further elucidate the association between shift work and MI; the value of such studies may be increased by the use of formal interaction measures such as SI.

The aim of this study was to analyse whether shift work interacts with elevated BMI, high waist-hip ratio (WHR), tobacco smoking, physical inactivity, elevated blood pressure, elevated blood lipids and diabetes type II to increase the risk of MI.

METHODS

Study design and study population

The analyses were conducted in a case-referent study. Cases were defined as all non-fatal and fatal first ever events of acute MI. They were collected from a
database that included information from two parallel studies (the Stockholm Heart Epidemiology Programme (SHEEP), and the Västernorrland Heart Epidemiology Program (VHEEP)). These two studies were identical in design, except for the period of case identification and the age span of the subjects, as described below. The combined dynamic study base contained all Swedish citizens in the counties of Stockholm and Västernorrland, who were free of previous clinically diagnosed MI and between 45–70 years of age. In Stockholm County, male cases were identified during 1992–1993, and female cases during 1992–1994. During the period January to October 1992, the upper age limit was 65 years. From November 1 1992 and onwards, the upper age limit was 70 years. In Västernorrland County, the age span was restricted to 45–65 years, and cases were identified during the period March 1993 to March 1995.

Event registration and case finding

Case identification was made from coronary and intensive care units, discharge registers, and death certificates from the Swedish National Register of Causes of Death. One referent per case was randomly selected at the time of the case event from the study base after stratification for sex, age, and hospital catchment area. Information on work environment and coronary risk factors was collected through questionnaires. For deceased cases, a close relative filled out the questionnaire.
All referents and all surviving cases were invited for a physical examination approximately three months after the MI. The study has been described in detail elsewhere (Knutsson et al. 1999).

Exposure information

Shift work
Information on working time was defined as of the last five years before the inclusion in the study. If the participant was on long-term sick leave, had retired or otherwise was not working, the questions concerned the last five years of their occupational career. Shift work was defined as either fixed work between 18:00 and 06:00 or rotating shift work in the same period (Knutsson et al. 1999).

Tobacco smoking
Smoking habits were divided into current smokers and non-smokers. Current smokers included ex-smokers who had stopped smoking within the last two years before inclusion, and non-smokers included ex-smokers quitting more than two years ago (Knutsson et al. 1999).

Body mass index and waist hip ratio
Height, weight, hip and waist measurements were collected at the physical examination. From this information BMI (weight/height2), and WHR (waist measurement divided by hip measurement) was calculated. A BMI was considered high if equal to or exceeding 28 kg/m2 and WHR was considered high if exceeding 0.875 for women under 60 years of age, 0.9 for women over 60 years and 1.0 for men (Knutsson et al. 1999). For those who failed to attend the physical
examination, but who had answered the questionnaire, only information on height and weight were used. For those with both self-reported and measured height and weight, the correlation between the two was high ($r^2 = 0.9$).

Physical inactivity
Leisure time physical activity was considered for the last ten years before inclusion in the SHEEP/VHEEP study. Participants who answered that they never or only occasionally were physically active in their spare time were considered physically inactive while those who did not meet this criteria were used as reference (Knutsson et al. 1999).

Blood lipids
The cut-off level for elevated triglycerides was set at ≥ 2.3 mmol/L and elevated total cholesterol level at ≥ 6.5 mmol/L. The samples were based on fasting levels of blood lipids. Pharmacological treatment for blood lipid related disorder was also includes as an indicator of elevated blood lipids (Knutsson et al. 1999).

Blood pressure
High blood pressure was considered present if a participant had either ≥ 170 mmHg in systolic or ≥ 95 mmHg in diastolic blood pressure, or reported pharmacological treatment for disease consistent with ICD 9-code 40, or earlier pharmacological treatment for hypertension that ended less than five years before inclusion in the database (Knutsson et al. 1999).

Diabetes type II
Diabetes type II was considered present if a participant had a level of fasting glucose > 6.7 mmol/L or if the question of known diabetes type II was reported in
the questionnaire, or participant requiring insulin, or if participant regularly medicated for disease consistent with ICD 9-code 250, or if a participant reported pharmacological treatment against diabetes type II in the questionnaire (Knutsson et al. 1999).

Statistical methods

Differences in population characteristic were analysed using Chi-square analysis, p-value of 0.05 or less was considered statistically significant. All analyses were performed separately for men and women and all OR’s were adjusted for age.

Interaction on an additive scale

We describe interaction using Rothmans Synergy index (SI) based on the following approach: Consider two risk factors A and B: odds ratio (OR) A1B1 is the outcome if both risk factors A and B are present, OR A1B0 is the OR of the outcome if risk factor A is present but risk factor B is absent, OR A0B1 is the OR of the outcome if risk factor A is absent but factor B is present. Logistic regression analyses where shift work and the risk factors were included as categorical indicator variables (with the lowest value as reference) were performed in order to derive the components for the interaction analyses. These calculations provide the basis for SI (ratio between combined effect and individual effects, as shown in the formula below) and with calculated confidence interval (95 % CI) (Rothman et al. 2008).

\[
SI = \frac{OR_{A1B1} - 1}{(OR_{A1B0} - 1) + (OR_{A0B1} - 1)}
\]
SI and 95% CI were calculated using a previously published SAS program (Lundberg et al. 1996).

SI = 1 means no interaction (the sum of effects due to multiple causes). SI > 1 refers to a positive interaction and SI < 1 refers to a negative interaction.

Chi-square analysis and logistic regression analysis was conducted in SPSS 17.0 for Windows and SI with 95% CI was calculated in SAS 9.1 for Windows.

RESULTS

Number of day workers and shift workers in the analysis

The material comprised 4 648 participants, including 1 417 (44%) male and 589 (41%) female cases of MI. Shift work was more common among cases with MI in both men 17.8% vs. 12.4 (p <0.001), and women 16.5% vs. 10.2% (p <0.001).

Male shift workers more often had elevated BMI, were current smokers, had high WHR and diabetes type II compared to male day workers. Female shift workers more often had elevated triglycerides and diabetes type II compared to female day workers. The rest of the analysed risk factors did not show any difference between shift and day workers (Table 1).
Table 1. Exposure characteristics (%) for the day and shift workers in this study.

P-values from Chi-square analysis.

<table>
<thead>
<tr>
<th></th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shift workers (%)</td>
<td>Day workers (%)</td>
</tr>
<tr>
<td>BMI ≥ 28</td>
<td>21.4</td>
<td>33.5</td>
</tr>
<tr>
<td>Current smoker</td>
<td>28.5</td>
<td>40.2</td>
</tr>
<tr>
<td>WHR a</td>
<td>16.6</td>
<td>27.3</td>
</tr>
<tr>
<td>Physical inactivity</td>
<td>34.2</td>
<td>33.8</td>
</tr>
<tr>
<td>Elevated triglycerides b</td>
<td>25.2</td>
<td>21.5</td>
</tr>
<tr>
<td>Elevated cholesterol c</td>
<td>36.3</td>
<td>34.2</td>
</tr>
<tr>
<td>Hypertension d</td>
<td>28.8</td>
<td>31.3</td>
</tr>
<tr>
<td>Diabetes type II e</td>
<td>16.8</td>
<td>12.3</td>
</tr>
</tbody>
</table>

a Exceeding 0.875 for women <60 years of age, 0.9 for women > 60 years of age, and exceeding 1.0 for men
b Triglycerides ≥ 2.3 mmol/L
c Total cholesterol ≥ 6.5 mmol/L
d Blood pressure ≥ 170 mmHg in systolic and/or ≥ 95 mmHg in diastolic or pharmacological treatment against hypertension
e Diabetes type II or pharmacological treatment against diabetes type II
BMI body mass index
WHR waist hip ratio

Table 2 showed SI as a measure of the interaction effect between shift work and the specific risk factor. The results showed that physical inactivity and shift work had an interaction effect on the risk of MI for males. Both high WHR and shift work and elevated triglycerides together with shift work had an interaction effect for females.
Table 2. Interaction between shift work and analysed risk factors on the association with MI for male and female shift workers compared to day workers expressed as synergy index (SI) and their confidence interval (95% CI). OR A\(\cdot\)B\(\cdot\) (reference) OR A\(\cdot\)B\(\cdot\) OR A\(\cdot\)B\(\cdot\) and OR A\(\cdot\)B\(\cdot\) with 95% confidence interval (95% CI), adjusted for age. Number (n) denotes included participants in each analysis.

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th></th>
<th>Women</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (95 % CI)</td>
<td>SI (95 % CI)</td>
<td>OR (95 % CI)</td>
<td>SI (95 % CI)</td>
</tr>
<tr>
<td>BMI ≥ 28 (n=4 593)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI < 28 and dw</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BMI ≥ 28 and dw</td>
<td>1.67 (1.41-1.99)</td>
<td>1.52 (1.18-1.96)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI < 28 and sw</td>
<td>1.77 (1.39-2.25)</td>
<td>1.70 (1.14-2.52)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI ≥ 28 and sw</td>
<td>1.65 (1.19-2.29)</td>
<td>0.45 (0.19-1.07)</td>
<td>2.31 (1.38-3.84)</td>
<td>0.7 (0.37-3.08)</td>
</tr>
<tr>
<td>Current smoker (CM) (n=4 648)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-smoker and dw</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CM and dw</td>
<td>2.33 (1.99-2.74)</td>
<td>3.36 (2.62-4.29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-smoker and sw</td>
<td>1.48 (1.12-1.94)</td>
<td>1.33 (0.84-2.11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM and sw</td>
<td>3.06 (2.31-4.06)</td>
<td>1.14 (0.71-1.83)</td>
<td>5.73 (3.57-9.19)</td>
<td>1.76 (0.94-3.31)</td>
</tr>
<tr>
<td>WHR (n=3 311)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-WHR and dw</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>WHR and dw</td>
<td>1.75 (1.41-2.17)</td>
<td>1.41 (1.04-1.92)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-WHR and sw</td>
<td>1.38 (1.05-1.81)</td>
<td>1.38 (0.86-2.22)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHR and sw</td>
<td>1.47 (0.97-2.24)</td>
<td>0.42 (0.11-1.61)</td>
<td>4.17 (2.19-7.92)</td>
<td>4.0 (1.12-14.28)</td>
</tr>
<tr>
<td>Physically inactivity (PI) (n=4 614)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non PI and dw</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PI and dw</td>
<td>1.52 (1.30-1.78)</td>
<td>2.33 (1.84-2.95)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non PI and sw</td>
<td>1.33 (1.03-1.73)</td>
<td>1.84 (1.18-2.85)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI and sw</td>
<td>2.74 (2.03-3.71)</td>
<td>2.05 (1.07-3.92)</td>
<td>3.85 (2.42-6.14)</td>
<td>1.32 (0.65-2.67)</td>
</tr>
<tr>
<td>Elevated triglycerides (ET) (n=3 076)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non ET and dw</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ET and dw</td>
<td>2.32 (1.85-2.90)</td>
<td>2.46 (1.7-3.55)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non ET and sw</td>
<td>1.38 (1.04-1.83)</td>
<td>1.37 (0.88-2.15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET and sw</td>
<td>3.22 (1.97-5.25)</td>
<td>1.32 (0.6-2.9)</td>
<td>9.40 (3.85-22.9)</td>
<td>5.69 (1.67-19.4)</td>
</tr>
<tr>
<td>Elevated cholesterol (EC) (n=3 284)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non EC and dw</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EC and dw</td>
<td>1.56 (1.3-1.88)</td>
<td>2.14 (1.61-2.84)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non EC and sw</td>
<td>1.30 (1.0-1.74)</td>
<td>1.97 (1.19-3.28)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC and sw</td>
<td>2.21 (1.51-3.25)</td>
<td>1.34 (0.6-3.0)</td>
<td>3.72 (2.12-6.53)</td>
<td>1.68 (0.6-5.13)</td>
</tr>
</tbody>
</table>
13

<table>
<thead>
<tr>
<th>High blood pressure (HBP) (n=4,574)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No HBP and dw</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>HBP and dw</td>
<td>0.52 (0.37-0.73)</td>
<td>1.87 (1.46-2.38)</td>
</tr>
<tr>
<td>No HBP and sw</td>
<td>0.70 (0.49-1.0)</td>
<td>1.76 (1.20-2.56)</td>
</tr>
<tr>
<td>HBP and sw</td>
<td>0.82 (0.55-1.21)</td>
<td>1.0 (0.45-2.21)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diabetes type II (DII) (n=4,648)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No DII and dw</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DII and dw</td>
<td>2.27 (1.80-2.86)</td>
<td>4.25 (2.93-6.15)</td>
</tr>
<tr>
<td>No DII and sw</td>
<td>1.49 (1.21-1.86)</td>
<td>1.82 (1.3-2.56)</td>
</tr>
<tr>
<td>DII and sw</td>
<td>3.31 (2.05-5.35)</td>
<td>1.27 (0.61-2.65)</td>
</tr>
</tbody>
</table>

- a Exceeding 0.875 for women <60 years of age, 0.9 for women > 60 years of age, and exceeding 1.0 for men
- b Triglycerides ≥ 2.3 mmol/L
- c Total cholesterol ≥ 6.5 mmol/L
- d Blood pressure ≥ 170 mmHg in systolic and/or ≥ 95 mmHg in diastolic or pharmacological treatment against hypertension
- e Diabetes type II or pharmacological treatment against diabetes type II
- BMI body mass index, CM current smoker, DII diabetes type II, dw day work, EC elevated cholesterol, ET elevated triglycerides, HBP high blood pressure, sw shift work, WHR waist hip ratio

DISCUSSION

This analysis show that shift work and physical inactivity had an interaction effect, measured by SI, for males, and shift work and high WHR or elevated triglycerides had an interaction effect for females and their respective risk of MI.

The results indicate that the negative consequences of physical inactivity are more hazardous for male shift workers compared to male day workers regarding the risk of MI. It has been previously reported that leisure-time physical activity is associated with decreased risk of CVD (Li and Siegrist 2012) and lower prevalence of CVD risk factors, such as for example hypertension (Huai et al. 2013) and
dyslipidemia (Mann et al. 2014). Thereby, an increase in physical activity for male shift workers may normalise their risk of MI. Moreover; there is also a possibility of physical inactivity acting as a proxy variable for other CVD risk factors, where physical inactivity may be associated with for example; tobacco smoking. However; by promoting physical activity, the prevalence of for example tobacco smoking is likely to decrease if the level of physical activity increases among shift workers.

Several mediating mechanisms by which physical activity is supposed to affect the risk of CVD have been proposed. HDL-cholesterol levels have been reported to increase and thereby likely decreasing LDL-cholesterol and triglycerides (11). Physical activity has also been found to improve insulin sensitivity (13), and thereby decreasing the risk of diabetes type II.

Regular physical activity lowers C-reactive protein (CRP) levels and reduces inflammation (14) and thereby decreasing the risk of CVD. Some of the inflammatory lowering effect may also be mediated by the lower body weight associated with regular exercise, as obesity and adipose tissue increase the inflammatory processes in the body. The total energy expenditure incorporates occupational physical activity, household physical activity, and leisure-time physical activity. Leisure-time physical activity is only a part of the total activity or
total energy expenditure. When studied separately, the results regarding occupational physical activity have not been as consistent as for leisure-time physical activity (Holtermann et al. 2012; Li and Siegrist 2012). Physical activity as household work has rarely been studied as a separate factor.

High WHR and elevated triglycerides had an interaction effect in shift working women on the association with MI. Thereby; it appears that high WHR and elevated triglycerides is more harmful to female shift workers compared to female day workers regarding the risk of MI. There was an interaction effect between WHR and shift work on the risk of MI. The finding of higher prevalence of high WHR among male shift workers has previously been reported (Nakamura et al. 1997), and the result is in accordance with the theory that shift work is probably associated with the metabolic syndrome (Karlsson et al. 2001). High WHR can indicate visceral adipose tissue that in turn is also a component in the metabolic syndrome and associated with increased risk of CVD (Grundy et al. 2004).

Promoting physical activity among female shift workers would potentially decrease their risk of CVD by reducing their visceral adipose tissue (Vissers et al. 2013). Triglyceride levels is likely to also be decreased via increased physical activity (Li and Siegrist 2012). Such efforts may counteract the interaction effects reported in this study for female shift workers. Both WHR and triglycerides are components in the metabolic syndrome and can be viewed as a pre-diabetic state.
However; both male and female shift workers had a higher prevalence of diabetes type II than day workers but there were no interaction effects with shift work on the association with the risk of MI found in our analysis. The interaction effect of high WHR and triglycerides for female shift workers and interaction between diabetes type II and shift work warrants further focus in independent datasets.

In the previous analysis of interaction effects between shift work and coronary heart disease, Tenkanen and colleagues (1998) used a sample consisting of males employed in production industry. They reported that shift work together with cigarette smoking or high BMI had an interaction effect on the risk of coronary heart disease (Tenkanen et al. 1998). Our analysis did not come to similar results regarding the risk factors in question. However the methods for interaction assessment differ between the studies, they reported the relative risk of each of the four exposure scenarios but did not calculate SI or similar outcome measure. Excluding women and other types of shift work related occupations might have made their findings less representative of shift workers in general. Because we included a broader range of shift workers and women in our analysis, the results may be more representative of the general population of shift workers. Virkkunen and co-workers (2006) did not study any of the same included risk factors as in our study (Virkkunen et al. 2006).
The cut-off levels for hypertension and elevated blood lipids are higher than what is common in clinical practice in Sweden today. Given that we used higher cut-off levels, we have included participants with an even higher risk. Thereby, we may have accentuated our interaction effects where such were received and at the same time, we may have underestimated interaction effects by reducing the number of participants included in each analysis. However; given sample size in this study, the risk of underestimation may be considered rather low.

For further studies of interaction between shift workers and the risk of CHD, it would be of interest to study a number of factors. For example, if the arteries of shift workers are more affected by atherosclerosis (Haupt et al. 2008), it would be of interest to study indicators of vascular specific inflammation. If shift workers with elevated vascular inflammation have a synergy effect when exposed to, for example physical inactivity, the need for effective preventive measure would be even more highlighted. This is emphasised by studying interactions as done in this study.

The data in this study is representative of the gender segregated labour market in Sweden with more women in, e.g. the health care sector and more men in, e.g. the transport sector (StatisticsSweden. 2012), meaning that the working situation for women and men in shift work compared with day work could be different. This
means that shift work in different sectors of the labour market might lead to exposure to different causal components that interact differently between the genders. This may have affected the results in our study.

Epidemiological studies are often limited by the fact that the information on shift work exposure is based on questionnaire data (Wang et al. 2011). Questions used to determine shift work exposure varies from questions not attempting to determine vital components of the shift work exposure (Costa 2003) to elaborate questions dealing with type of shift work and the exposure duration. The questionnaire data regarding shift work exposure used in this study and the definition of shift- and day work derived from that question has been used in previous studies (Knutsson et al. 1999).

Lifetime exposure to shift work is not possible to derive from the data, representing a limitation in this study. The definition of shift work in this study was based on the last five years of work exposure. This creates a potential misclassification risk where respondents may have had trouble in correctly determining their work conditions. This may have led to an underestimation or an overestimation of the risk associated with shift work exposure. However; it has been proposed that questionnaire data on shift work would not be subject to recall bias in any greater extent (Kolstad 2008).
In the existing literature, only a limited number of studies have analysed interaction effects for shift workers and the risk of MI. Therefore, the findings of this study are to be regarded as preliminary and more research in the field is needed. It might seem as if the traditional risk factors were more hazardous for shift workers. If this is the case, ordinary confounder control such as stratification or logistic regression analysis without the use of interaction terms would not be enough to control for the traditional risk factors, and an uneven distribution would therefore not be sufficiently accounted for. Confounding control was not addressed further in this study than the inclusion of age as a covariate in the interaction analyses. Given that the potential interactions between shift work and CVD risk factors are sparsely studied, the choice of potential confounders in interaction analyses is an area where further research is needed.

In summary, the analysis showed an interaction effect between physical inactivity and an increased association with risk of MI for male shift workers. Interaction effects were found for female shift workers with elevated triglycerides, WHR and an increased association with the risk of MI, indicating that these risk factors may be more harmful to male and female shift workers. To determine whether that is the case, more research is needed. If verified, the reported interactions suggest that
focus on prevention among shift workers should aim at promoting physical activity.

Acknowledgements

The SHEEP/VHEEP study was supported by the County Councils of Stockholm and Västernorrland and the Swedish Medical Research Council. Henrik Bøggild was supported by a grant from Umeå University. We express our gratitude to the staff of the departments of medicine at Karolinska, Löwenströmska, Norrtälje, Nacka, Sankt Göran, Danderyd, Södertälje, Sabbatsberg, Huddinge, Söder, Sundsvall, Härnösand, Sollefteå, and Örnsköldsvik hospitals for collecting data.
REFERENCES

Haupt, C. M., et al. (2008), 'The relation of exposure to shift work with atherosclerosis and myocardial infarction in a general population', *Atherosclerosis*, 201 (1), 205-11.

INTERACTION BETWEEN PARENTAL HISTORY OF MYOCARDIAL INFARCTION OR SUDDEN CARDIAC DEATH AND SHIFT WORK ON THE INCIDENCE OF MYOCARDIAL INFARCTION AMONG MALES

Jonas Hermansson¹ Berndt Karlsson² Anders Knutsson¹ Katja Gillander Gådin¹

¹ Department of Health Sciences, Mid Sweden University, Sundsvall, Sweden.
² Department of Public Health and Clinical Medicine, Occupational Medicine, University of Umeå, Sweden.
ABSTRACT

Shift work has been associated with an increased risk of cardiovascular disease (CVD) or coronary heart disease (CHD). However, there is a need for further studies in order to understand the factors behind the reported association. The aim of our study was to analyse the potential interaction of parental incidence of MI or SCD with shift work on the risk of MI for males.

The study was conducted within the SHEEP/WHEEP case control database comprising 2 697 cases and controls. Interaction was analysed on an additive scale using Relative Excess Risk due to Interaction (RERI), Attributable Proportion due to interaction (AP) and Synergy Index (SI).

The results show an interaction between shift work and paternal history of myocardial infarction (MI) or sudden cardiac death (SCD) SI 2.39 (95% confidence interval (CI) 1.02-5.60) and AP 0.40 (95% CI 0.08-0.73).

To conclude: our study shows that around 40% of MI occurring in males exposed to both paternal history of MI or SCD can be attributed to an interaction between the two risk factors.

Key terms: cardiovascular disease; case-control study; epidemiology; risk factor; heredity; interaction analysis.
INTRODUCTION

Numerous hypotheses have been presented in order to explain the possible causal mechanisms between shift work and cardiovascular disease (CVD) or coronary heart disease (CHD) presented in epidemiological studies. The hypotheses include disruption of the circadian rhythm and social stress related to isolation stemming from the divergent working hours. They also include increased prevalence of behavioural risk factors for CVD such as smoking, lack of physical activity and poor dietary choices, and low socioeconomic status, compared to day workers (Bøggild and Knutsson 1999; Frost et al. 2009). A systematic review concluded that the epidemiological evidence for the association between shift work and ischemic heart disease (or CHD) was limited (Frost et al. 2009). A later review concluded that there was moderate support for the association between shift work and CVD (Wang et al. 2011). A meta-analysis from 2012 concluded that shift work was associated with myocardial infarction (MI), ischemic stroke, and other coronary events (Vyas et al. 2012).

A meta-analysis published in 2015 summarised that parental history of CVD is an independent risk factor for CVD (Weijmans et al. 2015), coronary stenosis and coronary atherosclerosis (Suh et al. 2014). Premature parental history of CVD is associated with development and progression of sub-clinical CHD estimated via coronary artery calcium (CAC) (Pandey et al. 2014). Sudden cardiac death (SCD) is
associated with atherosclerosis, plaque vulnerability, and other risk factors for ischemic heart disease, all summarised in a review in 2014. SCD can thereby act as an indicator of prevalent CVD (El-Sherif 2014). However; it is not clarified if parental history of SCD is a risk factor for MI, but there are findings indicating that it is (Jouven et al. 1999).

Interaction is related to when parts of the causal effect of an exposure is conditional on the presence of another exposure (Ahlbom and Alfredsson 2005). Interaction analysis using departure from additivity of the risk from each of the risk factors demonstrates when the joint effect is greater than the sum of the single risk factors. Interactions that affect the association between parental history of CVD are not widely studied. One study reported that there was an interaction effect for males between family history of CHD and diabetes (Leander et al. 2001). Potential interactions between shift work and CVD risk factor could form the basis of targeted CVD prevention.

To our knowledge, there are no studies analysing the potential interaction between parental history of MI or SCD and shift work. The aim of this study was to analyse interaction of parental incidence of MI or SCD with shift work on the risk of MI for males.
METHOD

Study design and study population

The analyses were conducted in a case-referent study. Cases were defined as all non-fatal and fatal first ever events of acute MI. They were collected from a database that included information from two parallel studies (the Stockholm Heart Epidemiology Programme (SHEEP), and the Västernorrland Heart Epidemiology Program (VHEEP)). These two studies were identical in design, except for the period of case identification and the age span of the subjects, as described below. The combined dynamic study base contained all Swedish citizens living in the counties of Stockholm and Västernorrland, who were free of previous clinically diagnosed MI, and between 45–70 years of age. In Stockholm County, male cases were identified during 1992–1993, and female cases during 1992–1994. During the period January to October 1992, the upper age limit was 65 years, and 70 years from November 1, 1992 and onwards. In the Västernorrland County, the age span was restricted to 45–65 years, and cases were identified during the period March 1993 to March 1995.

Event registration and case finding

Identification of cases was made from coronary and intensive care units, discharge registers, and death certificates from the Swedish National Register of Causes of Death. One referent per case was randomly selected at the time of the case event from the study base after stratification for sex, age, and hospital catchment area. Information on work environment and coronary risk factors was collected through
questionnaires. For deceased cases, a close relative filled out the questionnaire. All referents and all surviving cases were invited for a physical examination approximately three month after the MI. The study has been described in detail elsewhere (Reuterwall et al. 1999).

Exposure information

Shift work
Information on working time was defined as of the last five years before the inclusion in the study. If the participant was on long-term sick leave, had retired or otherwise was not working, the questions concerned the last five years of their occupational career. Shift work was defined as either fixed work between 18.00 and 06.00 or rotating shift work in the same period (Reuterwall et al. 1999).

Parental history of MI or SCD
Parental history of MI or SCD or parental premature MI, prior to 65 years of age, was assessed using questionnaire data regarding paternal and maternal cause of death or incidence of MI before the age of 65. It was stated in the questionnaire that the question concerned the respondents' biological parents.

Case definition
Participants that reported that they had a history of parental MI or SCD, or a parental history of premature MI and were shift workers were considered cases. Participants that not reported any history of parental MI or SCD were used as reference category.
Statistical methods

Interaction on an additive scale
Interaction was analysed using the following approach. For two dichotomous factors A and B: odds ratio (OR) \(A_1B_1 \) is the OR of the outcome if both factors A and B are present, OR \(A_1B_0 \) is the OR of the outcome if factor A is present but factor B is absent, OR \(A_0B_1 \) is the OR of the outcome if factor A is absent but factor B is present. Logistic regression analyses with shift work and CVD risk factors were performed (each risk factor analysed separately together with shift work). The risk factors were included as categorical indicator variables (with \(A_0B_0 \) as reference) in order to derive the OR \(A_1B_1 \), OR \(A_1B_0 \), and OR \(A_0B_1 \). These calculations provide the basis for the interaction analysis.

Interaction between shift work and the parental MI or SCD was analysed by using relative risk due to interaction (RERI), attributable proportion due to interaction (AP) and Rothmans synergy index (SI) with 95% CI (Kalilani and Atashili 2006; Rothman et al. 2008). RERI, AP and SI and 95% CI were calculated using a published SAS program (Lundberg et al. 1996).

\[
RERI = OR_{A_1B_1} - OR_{A_1B_0} - OR_{A_0B_1} + 1
\]

RERI = 0 means no interaction or exactly additivity; RERI > 0 means positive interaction or more than additivity; RERI < 0 means negative interaction or less
than additivity; RERI can go from - infinity to + infinity. RERI was considered significant when the 95 % CI did not contain 0.

\[AP = \frac{RERI}{OR_{A_1B_1}} \]

AP = 0 means no interaction or exactly additivity; AP > 0 means positive interaction or more than additivity; AP < 0 means negative interaction or less than additivity; AP can go from –1 to + 1. AP was considered significant when the 95 % CI did not contain 0.

\[SI = \frac{OR_{A_1B_1} - 1}{(OR_{A_1B_0} - 1) + (OR_{A_0B_1} - 1)} \]

SI = 1 means no interaction (the sum of effects due to multiple causes). SI > 1 refers to a positive interaction and SI < 1 refers to a negative interaction. SI was considered significant when the 95 % CI did not contain 1.

Logistic regression analysis was conducted in SPSS 21.0 and RERI, AP, and SI with 95% CI were calculated in SAS 9.1. A p-value of 0.05 or less was considered statistically significant.
RESULTS

Table 1 shows that there was an association and interactions when the father had an MI or SCD and shift work on the MI risk for males, OR for both exposures 2.88 (95% CI 1.75-4.57) and SI 2.39 (95% CI 1.02-5.60). The AP shows that around 40 percent of MI occurring in male shift workers who also are exposed to paternal history of MI or SCD were attributed to an interaction between the two exposures. For cases with premature paternal MI and shift work, the OR was elevated in comparison to the OR for the individual risk factors 2.04 (95% CI 1.04-4.00). For cases with premature maternal MI and shift work, the combined OR was higher than for the individual risk factors alone (OR 2.59 (95% CI 1.04-6.43)). No other results were found. We also analysed interactions between shift work and parental MI or SCD, adding both parental and maternal cases without finding any interactions (results not reported).
Table 1. OR for each of the exposure scenarios and interaction expressed as RERI, AP, and SI with 95% CI, between shift work and analysed risk factors for males. Number of included participants in each analysis, all estimates were adjusted for age.

<table>
<thead>
<tr>
<th>Father MI or SCD</th>
<th>N cases</th>
<th>N controls</th>
<th>Estimate</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>1136</td>
<td>1509</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Father MI or SCD</td>
<td>143</td>
<td>157</td>
<td>1.45</td>
<td>(1.20-1.76)</td>
</tr>
<tr>
<td>Shift work</td>
<td>257</td>
<td>245</td>
<td>1.20</td>
<td>(0.94-1.53)</td>
</tr>
<tr>
<td>Father MI or SCD & shift work</td>
<td>50</td>
<td>23</td>
<td>2.88</td>
<td>(1.75-4.57)</td>
</tr>
</tbody>
</table>

Measures of interaction on additive scale

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>RERI</td>
<td>1.32</td>
<td>(-0.35-2.29)</td>
</tr>
<tr>
<td>AP</td>
<td>0.40</td>
<td>(0.08-0.73)</td>
</tr>
<tr>
<td>SI</td>
<td>2.39</td>
<td>(1.02-5.60)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Father MI before 65 years</th>
<th>N cases</th>
<th>N controls</th>
<th>Estimate</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>1164</td>
<td>1518</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Father MI before 65 years</td>
<td>99</td>
<td>85</td>
<td>1.55</td>
<td>(1.14-2.09)</td>
</tr>
<tr>
<td>Shift work</td>
<td>171</td>
<td>166</td>
<td>1.39</td>
<td>(1.10-1.74)</td>
</tr>
<tr>
<td>Father MI before 65 years & shift work</td>
<td>22</td>
<td>14</td>
<td>2.04</td>
<td>(1.04-4.00)</td>
</tr>
</tbody>
</table>

Measures of interaction on additive scale

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>RERI</td>
<td>0.12</td>
<td>(-1.48-1.71)</td>
</tr>
<tr>
<td>AP</td>
<td>0.05</td>
<td>(-0.63-0.74)</td>
</tr>
<tr>
<td>SI</td>
<td>1.10</td>
<td>(0.29-4.15)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mother MI or SCD</th>
<th>N cases</th>
<th>N controls</th>
<th>Estimate</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>1161</td>
<td>1507</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mother MI or SCD</td>
<td>146</td>
<td>115</td>
<td>1.74</td>
<td>(1.34-2.24)</td>
</tr>
<tr>
<td>Shift work</td>
<td>168</td>
<td>155</td>
<td>1.46</td>
<td>(1.16-1.85)</td>
</tr>
<tr>
<td>Mother MI or SCD & shift work</td>
<td>25</td>
<td>25</td>
<td>1.31</td>
<td>(0.75-2.29)</td>
</tr>
</tbody>
</table>

Measures of interaction on additive scale

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>RERI</td>
<td>-0.97</td>
<td>(-1.9-0.04)</td>
</tr>
<tr>
<td>AP</td>
<td>-0.66</td>
<td>(-1.66-0.34)</td>
</tr>
<tr>
<td>SI</td>
<td>-0.33</td>
<td>(0.06-1.94)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mother MI before 65 years</th>
<th>N cases</th>
<th>N controls</th>
<th>Estimate</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>1172</td>
<td>1525</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mother MI before 65 years</td>
<td>34</td>
<td>28</td>
<td>1.58</td>
<td>(0.95-2.62)</td>
</tr>
<tr>
<td>Shift work</td>
<td>179</td>
<td>173</td>
<td>1.40</td>
<td>(1.12-1.75)</td>
</tr>
<tr>
<td>Mother MI before 65 years & shift work</td>
<td>14</td>
<td>7</td>
<td>2.59</td>
<td>(1.04-6.43)</td>
</tr>
</tbody>
</table>

Measures of interaction on additive scale

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>RERI</td>
<td>0.65</td>
<td>(-1.99-3.30)</td>
</tr>
<tr>
<td>AP</td>
<td>0.24</td>
<td>(-0.53-1.00)</td>
</tr>
<tr>
<td>SI</td>
<td>1.59</td>
<td>(0.31-8.24)</td>
</tr>
</tbody>
</table>

AP attributable proportion due to interaction, MI myocardial infarction, OR odds ratio, RERI relative excess risk due to interaction, SCD sudden cardiac death, SI synergy index, 95 % CI 95 % confidence interval.
DISCUSSION

The results of this study show that there is an interaction between paternal history of MI or SCD and shift work for males and the risk of MI. This is, to our knowledge, the first time such results have been reported.

Previous studies have shown that parental CVD is an independent risk factor for CVD outcomes (Weijmans et al. 2015), and affecting factors associated with increased risk of CHD (Pandey et al. 2014; Suh et al. 2014). Different mechanisms for this association have been discussed; parental history of CVD accumulates both known and unidentified environmental and heritable risk factors in a specific family (de Goma et al. 2012). It has also been reported that parental history of premature CVD affects coronary artery calcium, which is a risk factor for future CVD in healthy individuals. The increased risk of coronary atherosclerosis associated with history of premature CHD may not only be attributed to genetic components, but rather the combinations of environmental and genetic factors (Pandey et al. 2014).

Factors related to sedentary life style such as obesity have been shown to proceed from generation to generation (Whitaker et al. 1997), the same has been shown to some extent for type of occupation (van de Mheen et al. 1998). An increased biological predisposition for MI together with the inheritance of sedentary life style
may explain our findings to some extent. Our results may emphasise more on plausible hereditary factors than biological factors. If our findings are more associated with behaviour that children adapt from their parents, it may also be of interest to extend further analyses to comprehend parental MI or SCD not only for biological parents and potential interactions with shift work and CVD. In fact, there are findings showing an added value of extending the term ‘family history of CVD’ such as age at onset of disease, type of family relationship and the number of affected relatives (van Daele et al. 2013). Early life events may also play a role in our findings. For example, a review from 2008 concluded that birth weight as an indicator of fetal nutrition has a U-shaped risk for the development of metabolic disease later in life (Gluckman et al. 2008). Childhood socioeconomic status is often a direct consequence of the socioeconomic status of the parents, it has been associated with poorer adult health and health related behaviour (van de Mheen et al. 1998). Early life events and childhood socioeconomic status may interact with parental history of CHD; this could hold part of the explanation behind the results in this study. In shift workers, a family history of diabetes has been associated with an increased risk for the offspring to develop diabetes (Kawakami et al. 1999). Altogether, this would make an interesting aim for future studies that could bring understanding to the potential interplay between genetic factors and behavioural patterns leading up to increased risk of CHD.
Premature occurrence of parental CHD is often viewed as a vital component of the familial aggregation of CVD risks (Pandey et al. 2014). No interaction between shift work and premature parental MI was found, this might be related to the small amount of participants in the A:B1.

A meta-analysis from 2015 reported that maternal or paternal history was more or less equal in effect, thereby, (Weijmans et al. 2015). We did not find interactions between maternal history of MI or SCD and shift work, this may be explained by the fact that the number of cases and controls included in the specific analysis were quite few. A larger number of participants could have resulted in significant results, specifically in the analysis of interaction between shift work and premature maternal MI. Larger study materials are needed to establish potential interactions between shift work and maternal history of CHD.

Analysis of interactions between parental MI and SCD for females was excluded from this study due to insufficient number of females in our study population; more specifically the amount of females with double exposures was in all models less than 10 (OR A:B1). In order to analyse potential interaction effects between parental history of MI or SCD and shift work for females, larger study materials are needed.
Interaction can be assessed both on an additive scale and on a multiplicative scale. Given that a number of epidemiologists have argued that biologic interaction should be assessed on an additive scale rather than a multiplicative scale (Andersson et al. 2005; Hallqvist et al. 1996), we assessed interaction on an additive scale in this study. Multiplicative interaction can produce results that appear amplified compared to results from additive interaction analysis using the same data (Ahlbom and Alfredsson 2005). Therefore, additive interaction analysis may be less subjected to the risk of false positive interaction results.

Data on whether the study participant was a day worker or a shift worker was derived from questionnaire data, concerning the last five years of their working life. Such data is subject to bias, both in the actual reporting from the respondent but also in so-called healthy worker survivor bias. Healthy worker survivor bias is defined as the trend of less healthy individuals leaving more demanding occupations earlier, and thereby receiving less exposure, compared with their healthier counterparts. This fact is likely to keep participants in shift work that may be less prone to different forms of diseases. Several methods have been suggested for controlling study outcomes for health worker survivor bias, one being cohort restriction. Cohort restriction means that the exposure in question must have been present for a specified time period, as was the case in this study (Buckley et al. 2015). The questionnaire data regarding shift work exposure used in this study and
the definition of shift- and day work derived from that question has been used in previous studies (Knutsson et al. 1999). Lifetime exposure to shift work is not possible to derive from the data, representing a limitation in this study. The definition of shift work in this study was based on the last five years of work exposure. This creates a potential misclassification risk where respondents may have had trouble in correctly determining their working conditions. This may have led to an underestimation of the risk associated with shift work exposure if there are former shift workers among the day workers. It has been proposed that questionnaire data on shift work would not be subject to recall bias in any greater extent (Kolstad 2008) creating further strengthen in the shift work exposure variable in this study.

Data on parental history of MI or SCD was also collected from questionnaire data. Previous studies have shown a tendency towards under-reporting of family history of CHD (Bensen et al. 1999; Silberberg et al. 1998). Given these findings, the risk associated with family history of CHD may be falsely lowered. Validation of such questionnaire data via the use of registries has been performed, supporting the reliability of questionnaire data when analysing the association between parental MI increases the risk of offspring MI (Nielsen et al. 2013). One of the included questions regarded parental MI or SCD. SCD was intended as a proxy for mortality related to a number of CVD associated with SCD, but may be subject to
bias relating to the respondents level of medical knowledge or to the age of the respondent at the time of their parents demise. At young age, the risk of misunderstanding the actual diagnosis that caused the mortality may be decreased, and if the event occurred at young age, the risk of recall bias increases if the questionnaire was completed later in life. It may be of greater interest to validate questionnaire data on parental SCD compared to parental MI given that a respondent may have trouble in correctly ascertain a SCD.

To extend this hypothesis regarding interaction between parental MI or SCD and shift work, it would be interesting to conduct further studies of interaction effects between parental incidence of a wider spectrum of CHD and cardio metabolic disorders. For example; different forms of stroke (Seshadri et al. 2010), and also metabolic diseases like diabetes type II (Wikner et al. 2013) have been reported to have similar risk associations as parental history of CVD. Such studies would then both extend the diagnoses studied among parents, and other relatives, but also studying outcomes among shift workers beyond MI and SCD. This could further elucidate whether there are inherited risks interacting to increase the risk of CHD for shift workers. It would also be of interest to study familial clustering of CVD, extending from parental CVD to include also CVD among siblings (van Daele et al. 2013), and to lower the definition of premature CHD to 55 years of age (Pandey et al. 2014), and potential interactions with shift work. Studying interaction between
shift work and risk factors for CHD such as parental history of MI or SCD could provide further understanding of the association between shift work and CHD morbidity. Such findings may form the basis of future prevention strategies focused on the potential interplay between genetics and behaviour to decrease the risk of CHD.

To summarise; the findings of our study show an interaction for males between paternal MI or SCD and shift work on the risk of MI. These findings may have clinical implications for occupational health workers when assessing the future risk of MI for male shift workers; paternal history of MI or SCD needs to be taken in to account. By doing so, they will increase the possibility of finding employees with increased risk of MI. More research is needed to further clarify interaction effects between shift work and parental history of MI or SCD.
REFERENCES

Bensen, J. T., et al. (1999), 'Accuracy of proband reported family history: the NHLBI Family Heart Study (FHS)', Genet Epidemiol, 17 (2), 141-50.

Lundberg, M., et al. (1996), 'A SAS program calculating three measures of interaction with confidence intervals', Epidemiology, 7 (6), 655-6.

