Seyed Jalaleddin Mousavirad

Postdoktor|Postdoc

Background

Seyed Jalaleddin Mousavirad (in short: Jalal) is currently a Postdoctoral researcher at Mid Sweden University, located in Sundsvall, Sweden. Previously, he served as a Research Fellow at the University of Beira Interior in Portugal, where he was actively involved in the European project called GreenStamp. This project focused on advancing AI-based sustainable practices and technologies for Android Apps.
Jalal obtained his PhD in Computer Engineering, specializing in Artificial Intelligence, from the University of Kashan in Iran. Following his doctoral studies, he worked at the University of Tehran (2018-2019) and Azad University (2019-2020) as an instructor. Additionally, he served as an Assistant Professor at the Faculty of Engineering at Hakim Sabzevari University in Iran.
With a strong research background, Jalal has made significant contributions in the areas of pattern recognition, machine learning, image processing, and evolutionary computation. He has published six book chapters and over 100 papers in reputable academic journals and conferences.
Jalal's international research experiences also include visiting a world-class research group at Xi'an Jiaotong-Liverpool University in China, where he further expanded his knowledge and collaborations.
He has organized several special sessions at prestigious conferences such as the IEEE Congress on Evolutionary Computation (IEEE CEC) and the International Conference on the Applications of Evolutionary Computation (EvoApplications). Furthermore, Jalal has served as a guest editor for various journals, including Computational Intelligence and Neuroscience, Entropy, and Mathematical Biosciences and Engineering.
Jalal actively contributes to the academic community as a reviewer for more than 50 prestigious journals and conferences. Some notable publications he has reviewed include IEEE Transactions on Evolutionary Computation, IEEE Transactions Systems, Mans, and Cybernetics, IEEE Transactions on Cybernetics, IEEE Access, IEEE System Journal, IEEE Transactions on Consumer Electronics, IEEE Transactions on Automation Science and Engineering, IEEE Transactions on Cognitive and Developmental Systems, IEEE Transactions on Geoscience and Remote Sensing, IEEE Transactions on Mobile Computing, Journal of Visual Communication and Image Representation, Neural Networks, Expert Systems with Applications, Applied Soft Computing, Soft Computing, Knowledge-based Systems, Swarm and Evolutionary Computation, Information Sciences, Genetic Programming and Evolvable Machines, IEEE Sensor Letters, and Connection Science.

Area of interest

Image Processing and Computer Vision, Machine Learning, Evolutionary Computation, and Applied Artificial Intelligence

Other information

Google Scholar 

Researchgate 

Linkedin

Web of Science 

ORCID

 

 

Publications

Articles in journals

Hussain, M. , O'Nils, M. , Lundgren, J. & Seyed Jalaleddin, M. (2024). A Comprehensive Review On Deep Learning-Based Data Fusion. IEEE Access,  

Al Bataineh, A. , Jalali, S. M. J. , Seyed Jalaleddin, M. , Yazdani, A. , Islam, S. M. S. & Khosravi, A. (2024). An efficient hybrid extreme learning machine and evolutionary framework with applications for medical diagnosis. Expert systems (Print), vol. 41: 4  

Casas-Ordaz, A. , Aranguren, I. , Oliva, D. , Seyed Jalaleddin, M. & Pérez-Cisneros, M. (2024). Enhancing image thresholding segmentation with a novel hybrid battle royale optimization algorithm. Multimedia tools and applications,  

Seyed Jalaleddin, M. , Rezaee, K. , Almazyad, A. S. , Mohamed, A. W. , Zabihzadeh, D. , Pourvahab, M. & Oliva, D. (2024). GSK-LocS : Towards a more effective generalisation in population-based neural network training. Alexandria Engineering Journal, vol. 109, pp. 126-143.    

Moghadam, M. H. , Borg, M. , Saadatmand, M. , Seyed Jalaleddin, M. , Bohlin, M. & Lisper, B. (2024). Machine learning testing in an ADAS case study using simulation‐integrated bio‐inspired search‐based testing. Journal of Software, vol. 36: 5  

Seyed Jalaleddin, M. & Alexandre, L. A. (2024). Metaheuristic-based energy-aware image compression for mobile app development. Multimedia tools and applications,  

Mohammadigheymasi, H. , Tavakolizadeh, N. , Matias, L. , Mousavi, S. M. , Moradichaloshtori, Y. , Seyed Jalaleddin, M. & Fernandes, R. (2023). A data set of earthquake bulletin and seismic waveforms for Ghana obtained by deep learning. Data in Brief, vol. 47, pp. 108969-108969.  

Seyed Jalaleddin, M. , Rahmani, R. & Dolatabadi, N. (2023). A transfer learning based artificial neural network in geometrical design of textured surfaces for tribological applications. Surface Topography: Metrology and Properties, vol. 11: 2  

Seyed Jalaleddin, M. & Alexandre, L. A. (2023). Energy-aware JPEG image compression : A multi-objective approach. Applied Soft Computing, vol. 141  

Zabihzadeh, D. , Alitbi, Z. & Seyed Jalaleddin, M. (2023). Ensemble of loss functions to improve generalizability of deep metric learning methods. Multimedia tools and applications,  

Seyed Jalaleddin, M. , Schaefer, G. , Zhou, H. & Moghadam, M. H. (2023). How effective are current population-based metaheuristic algorithms for variance-based multi-level image thresholding?. Knowledge-Based Systems, vol. 272  

Bojnordi, E. , Seyed Jalaleddin, M. , Pedram, M. , Schaefer, G. & Oliva, D. (2023). Improving the Generalisation Ability of Neural Networks Using a Lévy Flight Distribution Algorithm for Classification Problems. New generation computing, vol. 41: 2, pp. 225-242.  

Oliva, D. , Ortega-Sanchez, N. , Navarro, M. A. , Ramos-Michel, A. , El-Abd, M. , Seyed Jalaleddin, M. & Nadimi-Shahraki, M. H. (2023). Segmentation of thermographies from electronic systems by using the global-best brain storm optimization algorithm. Multimedia tools and applications, vol. 82: 29, pp. 44911-44941.  

Oliva, D. , Martins, M. S. R. , Hinojosa, S. , Elaziz, M. A. , dos Santos, P. V. , da Cruz, G. & Seyed Jalaleddin, M. (2022). A hyper-heuristic guided by a probabilistic graphical model for single-objective real-parameter optimization. International Journal of Machine Learning and Cybernetics, vol. 13: 12, pp. 3743-3772.  

Rezaee, K. , Seyed Jalaleddin, M. , Khosravi, M. R. , Moghimi, M. K. & Heidari, M. (2022). An Autonomous UAV-Assisted Distance-Aware Crowd Sensing Platform Using Deep ShuffleNet Transfer Learning. IEEE transactions on intelligent transportation systems (Print), vol. 23: 7, pp. 9404-9413.  

Zabihzadeh, D. , Tuama, A. , Karami-Mollaee, A. & Seyed Jalaleddin, M. (2022). Low-rank robust online distance/similarity learning based on the rescaled hinge loss. Applied intelligence (Boston), vol. 53: 1, pp. 634-657.  

Seyed Jalaleddin, M. , Oliva, D. , Chakrabortty, R. K. , Zabihzadeh, D. & Hinojosa, S. (2022). Population-based self-adaptive Generalised Masi Entropy for image segmentation : A novel representation. Knowledge-Based Systems, vol. 245  

Seyed Jalaleddin, M. , Zabihzadeh, D. , Oliva, D. , Perez-Cisneros, M. & Schaefer, G. (2021). A Grouping Differential Evolution Algorithm Boosted by Attraction and Repulsion Strategies for Masi Entropy-Based Multi-Level Image Segmentation. Entropy, vol. 24: 1  

Esmaeili, L. , Seyed Jalaleddin, M. & Shahidinejad, A. (2021). An efficient method to minimize cross-entropy for selecting multi-level threshold values using an improved human mental search algorithm. Expert systems with applications, vol. 182  

Seyed Jalaleddin, M. , Ebrahimpour-Komleh, H. & Schaefer, G. (2020). Automatic clustering using a local search-based human mental search algorithm for image segmentation. Applied Soft Computing, vol. 96  

Seyed Jalaleddin, M. & Ebrahimpour-Komleh, H. (2020). Human mental search-based multilevel thresholding for image segmentation. Applied Soft Computing, vol. 97  

Seyed Jalaleddin, M. , Bidgoli, A. A. , Komleh, H. E. & Schaefer, G. (2019). A memetic imperialist competitive algorithm with chaotic maps for multi-layer neural network training. International Journal of Bio-Inspired Computation (IJBIC), vol. 14: 4, pp. 227-227.  

Seyed Jalaleddin, M. , Ebrahimpour-Komleh, H. & Schaefer, G. (2019). Effective image clustering based on human mental search. Applied Soft Computing, vol. 78, pp. 209-220.  

Amirsadri, S. , Seyed Jalaleddin, M. & Ebrahimpour-Komleh, H. (2017). A Levy flight-based grey wolf optimizer combined with back-propagation algorithm for neural network training. Neural Computing & Applications, vol. 30: 12, pp. 3707-3720.  

Seyed Jalaleddin, M. & Ebrahimpour-Komleh, H. (2017). Human mental search : a new population-based metaheuristic optimization algorithm. Applied intelligence (Boston), vol. 47: 3, pp. 850-887.  

Seyed Jalaleddin, M. & Ebrahimpour-Komleh, H. (2017). Multilevel image thresholding using entropy of histogram and recently developed population-based metaheuristic algorithms. Evolutionary Intelligence, vol. 10: 1-2, pp. 45-75.  

lehi, A. Y. , Seyed Jalaleddin, M. & Akbari, A. (2017). Pre-treatment of textile wastewaters containing Chrysophenine using hybrid membranes. Membrane Water Treatment, vol. 8: 1, pp. 89-112.  

Chapters in books

Pankaj, T. , Ahuja, P. , Ravindran, G. & Seyed Jalaleddin, M. (2024). Innovation Management in the Context of Smart Cities' Digital Transformation. In Handbook of Artificial Intelligence for Smart City Development. CRC Press. pp. 141-156.  

Conference papers

Zakaryapour Sayyad, F. , Shallari, I. , Seyed Jalaleddin, M. & O'Nils, M. (2025). Model Evaluation and Selection for Robust and Efficient Advertisement Detection in Print Media. In Communications in Computer and Information Science.. pp. 211--224.  

Seyed Jalaleddin, M. , Oliva, D. , Schaefer, G. , Moghadam, M. H. & El-Abd, M. (2024). A Novel Two-Level Clustering-Based Differential Evolution Algorithm for Training Neural Networks. In Lecture Notes in Computer Science.. pp. 259--272.  

Seyed Jalaleddin, M. , Shallari, I. & O'Nils, M. (2024). An Automated Temporal Sorting System for Plant Growth Using Deep CNN Transfer Learning. In 2024 IEEE Sensors Applications Symposium, SAS 2024 - Proceedings.  

Seyed Jalaleddin, M. , Shallari, I. & O'Nils, M. (2024). An Evolutionary Compact Deep Transfer Learning with CNN for Hyper-Parameter Tuning in Temporal Sorting of Plant Growth. In 2024 IEEE Congress on Evolutionary Computation (CEC).  

Morales-Castañeda, B. , Oliva, D. , Casas-Ordaz, A. , Arturo, V. , Mario, A. N. , Alfonso, R. , Erick, R. & Seyed Jalaleddin, M. (2023). A Novel Diversity-Aware Inertia Weight and Velocity Control for Particle Swarm Optimization. In 2023 IEEE Congress on Evolutionary Computation (CEC).  

Rahmani, S. , Seyed Jalaleddin, M. , El-Abd, M. , Schaefer, G. & Oliva, D. (2023). Centroid-Based Differential Evolution with Composite Trial Vector Generation Strategies for Neural Network Training. In Applications of Evolutionary Computation.  

Ramos-Michel, A. , Navarro, M. A. , Oliva, D. , Morales-Castaneda, B. , Casas-Ordaz, A. , Valdivia, A. , Rodriguez-Esparza, E. & Seyed Jalaleddin, M. (2023). Improving Metaheuristic Algorithm Design Through Inequality and Diversity Analysis : A Novel Multi-Population Differential Evolution. In 2023 IEEE Symposium Series on Computational Intelligence (SSCI).. pp. 1547--1552.  

Morales-Castañeda, B. , Oliva, D. , A Navarro, M. , Ramos-Michel, A. , Valdivia, A. , Casas-Ordaz, A. , Rodríguez-Esparza, E. & Seyed Jalaleddin, M. (2023). Improving the Convergence of the PSO Algorithm with a Stagnation Variable and Fuzzy Logic. In 2023 IEEE Congress on Evolutionary Computation (CEC).  

Seyed Jalaleddin, M. , Amir H., G. & Homayoun, H. (2022). A Clustering-based Differential Evolution Boosted by a Regularisation-based Objective Function and a Local Refinement for Neural Network Training. In 2022 IEEE Congress on Evolutionary Computation (CEC).  

Hemmati, M. & Seyed Jalaleddin, M. (2022). A New Hybrid Method for Text Feature Selection Through Combination of Relative Discrimination Criterion and Ant Colony Optimization. In Proceedings of 7th International Conference on Harmony Search, Soft Computing and Applications.  

Moravvej, S. V. , Seyed Jalaleddin, M. , Oliva, D. , Schaefer, G. & Sobhaninia, Z. (2022). An Improved DE Algorithm to Optimise the Learning Process of a BERT-based Plagiarism Detection Model. In 2022 IEEE Congress on Evolutionary Computation (CEC).  

Navarro, M. A. , Ramos-Michel, A. , Gaspar,, A. , Oliva, D. , Hinojosa, S. , Seyed Jalaleddin, M. & Pérez-Cisneros, M. (2022). Improving the Convergence and Diversity in Differential Evolution Through a Stock Market Criterion. In Applications of Evolutionary Computation.  

Navarro, M. A. , Ramos-Michel, A. , Morales-Castañeda, B. , Maciel-Castillo, O. , Aranguren, I. , Valdivia, A. , Oliva, D. & Seyed Jalaleddin, M. (2022). Improving the optimization performance by an adaptable design : A dynamic selection of operators via criteria-based matrix for evolutionary algorithms. In 2022 IEEE Congress on Evolutionary Computation (CEC).  

Seyed Jalaleddin, M. , Helali Moghadam, M. , Saadatmand, M. , Chakrabortty, R. , Schaefer, G. & Oliva, D. (2022). RWS-L-SHADE : An Effective L-SHADE Algorithm Incorporation Roulette Wheel Selection Strategy for Numerical Optimisation. In Applications of Evolutionary Computation.  

Pedram, M. , Seyed Jalaleddin, M. & Schaefer, G. (2022). Training Neural Networks with Lévy Flight Distribution Algorithm. In Proceedings of 7th International Conference on Harmony Search, Soft Computing and Applications.  

Seyed Jalaleddin, M. , Schaefer, G. , Korovin, I. , Oliva, D. , Helali Moghadam, M. & Saadatmand, M. (2021). HMS-OS: Improving the Human Mental Search Optimisation Algorithm by Grouping in both Search and Objective Space. Paper presented at the IEEE Symposium Series on Computational Intelligence (SSCI)  

The page was updated 10/5/2023